简单数论总结1——gcd与lcm】的更多相关文章

并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分解为素因子的乘积,形如: 则显而易见的有一下结论: 相乘,得: 得证 几种求gcd的算法 欧几里得算法(辗转相除法) 辗转相减法(优化:stein_gcd) 欧几里得算法 基于事实: 实现: int gcd(int a, int b){ ) ? a : gcd( b , a % b) ; } 简短而…
Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the smallest positive integer that is divisible by both a and b. for example, lcm(2,3)=6 and lcm(4,6)=12. (2) gcd(a,b), the greatest common divisor of tw…
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) for( int j = i; j <= n; j++ ) if( lcm(i, j) ==…
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD. \[ x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots \] \[ y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots \] \[ z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots \] \…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 2982    Accepted Submission(s): 1305 Problem Description Given two positive integers G and L, could you tell me how many solutions of…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 3379    Accepted Submission(s): 1482 Problem Description Given two positive integers G and L, could you tell me how many solutions of…
HDU4497 GCD and LCM 如果 \(G \% L != 0\) ,那么输出 \(0\) . 否则我们有 \(L/G=(p_1^{r_1})\cdot(p_2^{r_2})\cdot(p_3^{r_3})\cdots(p_m^{r_m})\) . 我们又有: \[ x=(p_1^{i_1})\cdot(p_2^{i_2})\cdot(p_3^{i_3})\cdots(p_m^{i_m}) \\ y=(p_1^{j_1})\cdot(p_2^{j_2})\cdot(p_3^{j_3})…
这个题目挺不错的,看到是通化邀请赛的题目,是一个很综合的数论题目. 是这样的,给你三个数的GCD和LCM,现在要你求出这三个数有多少种可能的情况. 对于是否存在这个问题,直接看 LCM%GCD是否为0,如果不为0的话,就没有满足条件的数哦,反之一定有. 接下来问题等价于求三个数GCD为1,LCM为LCM/GCD的种类数了. 设这个商为X. 首先我们可以把X因数分解成X=(p1*x1)*(p2*x2)*……*(pn*xn): 单独拿出一个素数进行讨论,如果要设ABC分别为满足情况的三个数,那么Xa…