Model selection模型选择 ML中的一个重要任务是模型选择,或使用数据为给定任务找到最佳的模型或参数. 这也称为调优. 可以对诸如Logistic回归的单独Estimators进行调整,或者对包括多个算法,特征和其他步骤的整个Pipeline进行调整. 用户可以一次调整整个Pipeline,而不必单独调整Pipeline中的每个元素. MLlib支持使用CrossValidator和TrainValidationSplit等工具进行模型选择.这些工具需要以下items:    Est…
Spark - ML Tuning 官方文档:https://spark.apache.org/docs/2.2.0/ml-tuning.html 这一章节主要讲述如何通过使用MLlib的工具来调试模型算法和pipeline,内置的交叉验证和其他工具允许用户优化模型和pipeline中的超参数: 目录: 模型选择,也就是调参: 交叉验证: 训练集.验证集划分: 模型选择(调参) 机器学习的一个重要工作就是模型选择,或者说根据给定任务使用数据来发现最优的模型和参数,也叫做调试,既可以针对单个模型进…
堆内存(Heap) 堆是由Java虚拟机(JVM,下文提到的JVM特指Sun hotspot JVM)用来存放Java类.对象和静态成员的内存空间,Java程序中创建的所有对象都在堆中分配空间,堆只用来存储对象,应用程序通过存放在堆栈(Stack)内的引用来访问堆数据,一个JVM进程只能拥有一个堆.JVM通过-Xms和-Xmx参数分别设置堆的初始值和最大值,初始值默认是物理内存的1/64但小于1G,最大值默认是物理内存的1/4但小于1G .默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx…
XGBoost算法在实际运行的过程中,可以通过以下要点进行参数调优: (1)添加正则项: 在模型参数中添加正则项,或加大正则项的惩罚力度,即通过调整加权参数,从而避免模型出现过拟合的情况. (2)控制决策树的层数: 通过叶子结点数目控制决策树的层数,视乎样本量大小决定,对于10万以下 的样本,一般在1到4之间,而针对更大的样本量,可以尝试更深的决策树层数发掘隐藏在数据里的一些规律或模式.(3)设定叶子结点包含的最少样本数目: 从而防止出现过小的叶子结点,降低预测(4)增加算法迭代次数: 可有效提…
公号:码农充电站pro 主页:https://codeshellme.github.io 本篇文章来介绍随机森林(RandomForest)算法. 1,集成算法之 bagging 算法 在前边的文章<AdaBoost 算法-分析波士顿房价数据集>中,我们介绍过集成算法.集成算法中有一类算法叫做 bagging 算法. bagging 算法是将一个原始数据集随机抽样成 N 个新的数据集.然后将这 N 个新的数据集作用于同一个机器学习算法,从而得到 N 个模型,最终集成一个综合模型. 在对新的数据…
[Spark内存模型] Spark在一个executor中的内存分为3块:storage内存.execution内存.other内存. 1. storage内存:存储broadcast,cache,persist数据的地方. 2. execution内存:执行内存,join.aggregate.map等shuffle中间结果都缓存在这部分内存中,满了再写入磁盘,能够减少IO.其实map过程也是在这个内存中执行的. 3. other内存:程序代码执行时预留给自己的内存. 其中,execution和…
Some key concents regarding SQL optimization predicate selectivity (column unique ratio) / cardinality (estimated returned) driving (outer) table access path/method (e.g. Table Scan, Index Uique/Range Scan) join method (e.g. Nested Loops or Sort Merg…
堆.栈.方法区概念区别 1.堆 堆内存用于存放由new创建的对象和数组.在堆中分配的内存,由java虚拟机自动垃圾回收器来管理.根据垃圾回收机制的不同, Java堆有可能拥有不同的结构,最为常见的就是将整个Java堆分为新生代和老年代.其中新声带存放新生的对象或者年龄不大的 对象,老年代则存放老年对象.新生代分为edn区.s0区.s1区,s0和s1也被称为from和to区域,他们是两块大小相等并且可以 互相角色的空间.绝大多数情况下,对象首先分配在eden区,在新生代回收后,如果对象还存活,则进…
规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1996799.html 1 问题      模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归.那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? 还有一类参数选择问题:如果我们想使用带权值的回归模型,那么怎么选择权重w公式里的参数…
http://blog.csdn.net/pipisorry/article/details/52250983 选择合适的estimator 通常机器学习最难的一部分是选择合适的estimator,不同的estimator适用于不同的数据集和问题. sklearn官方文档提供了一个图[flowchart],可以快速地根据你的数据和问题选择合适的estimator,单击相应的区域还可以获得更具体的内容. 代码中我一般这么写 def gen_estimators(): ''' List of the…