BP神经网络的直观推导与Java实现】的更多相关文章

人工神经网络模拟人体对于外界刺激的反应.某种刺激经过人体多层神经细胞传递后,可以触发人脑中特定的区域做出反应.人体神经网络的作用就是把某种刺激与大脑中的特定区域关联起来了,这样我们对于不同的刺激就可以调用大脑不同的功能区域进行处理了. 同时,人体神经系统还具有学习,归纳,推理的能力.我们使用计算机模拟了神经网络后,也具有了一定上述能力. 如上图,x层为输入,对应人体接收信号的神经元(比如眼睛,耳朵,手).y层为隐含层,对应人体的神经网络.z层为输出层,对应人体的大脑.wyx为x层到y层的权重,w…
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测. 简介 BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整[78].在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James McClelland提出的反向传播算法是最具影响力的.其包含BP的两大主要过程,即工作信号的正向传播与误差信号的反向传播,分别负责了神经网络中输出…
转自博客园@编程De: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html  http://blog.sina.com.cn/s/blog_88f0497e0102v79c.html 从神经网络的生物模型说起 我们知道人大脑信息的传递.对外界刺激产生反应都由神经元控制的,人脑就是由上百亿个的这样神经元构成.这些神经元之间并不孤立而且联系很密切,每个神经元平均与几千个神经元相连接,因此构成了人脑的神经网络.刺激在神经网络中的传播是遵循一…
转载:http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html BP 神经网络中的 BP 为 Back  Propagation 的简写,最早它是由Rumelhart.McCelland等科学家于 1986 年提出来的,Rumelhart 并在Nature 上发表了一篇非常著名的文章 <Learning representations by back-propagating errors> .随着时代的迁移,BP神经网络理论不断的得到改进…
BP神经网络是包含多个隐含层的网络,具备处理线性不可分问题的能力.以往主要是没有适合多层神经网络的学习算法,,所以神经网络的研究一直处于低迷期. 20世纪80年代中期,Rumelhart,McClelland等成立了Parallel Distributed Procession(PDP)小组,提出了著名的误差反向传播算法(Error Back Propagtion,BP). BP和径向基网络属于多层前向神经网络.广泛应用于分类识别.逼近.回归.压缩等领域. BP神经网络(强调是用BP算法)一般是…
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你. 本文货很干,堪比沙哈拉大沙漠,自己挑的文章,含着泪也要读完! ▌二. 科普: 生物上的神经元就是接收四面八方的刺激(输入),然后做出反应(输出),给它一点就灿烂.仿生嘛,于是喜欢放飞自我的 某些人 就提出了人工神经网络.一切的基础-->人工神经单元,…
Lec 4 BP神经网络详细推导 本篇博客主要记录一下Coursera上Andrew机器学习BP神经网络的前向传播算法和反向传播算法的具体过程及其详细推导.方便后面手撸一个BP神经网络. 目录 Lec 4 BP神经网络详细推导 4.1 网络结构 4.1.1 损失函数 4.1.2 网络结构 4.2 Forward Propagation 4.3 Back Propagation 4.3.1 第三层权重偏导的求法 4.3.2 第二层权重偏导的求法 4.3.3 第一层权重偏导的求法 4.3.4 直观感…
BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 下图为一典型的多层神经网络. 通常一个多层神经网络由L层神经元组成,其中:第1层称为输入层,最后一层(第L层)被称为输出层,其它各层均被称为隐含层(第2层~第L-1层). 令输入向量为: \[ \vec x = [x_1 \quad x_2 \quad \ldots \quad x_i \quad…
根据前篇博文<神经网络之后向传播算法>,现在用java实现一个bp神经网络.矩阵运算采用jblas库,然后逐渐增加功能,支持并行计算,然后支持输入向量调整,最后支持L-BFGS学习算法. 上帝说,要有神经网络,于是,便有了一个神经网络.上帝还说,神经网络要有节点,权重,激活函数,输出函数,目标函数,然后也许还要有一个准确率函数,于是,神经网络完成了: public class Net { List<DoubleMatrix> weights = new ArrayList<D…
机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的电位:如果某神经元的电位超过一个阈值,则被激活,否则不被激活.误差逆传播算法(error back propagation)是神经网络中最有代表性的算法,也是使用最多的算法之一. 误差逆传播算法理论推导 误差逆传播算法(error back propagation)简称BP网络算法.而一般在说BP网…