df=df.reset_index(drop=True)】的更多相关文章

df=df.reset_index(drop=True) ============ df = pd.read_csv('./train_file/train.csv').dropna()df_test = df.sample(frac=0.2, random_state=123456)df_train = df.drop(df_test.index)…
shenpi.sort_values(by=['apply_date'],ascending=True,inplace=True)shenpi.reset_index(drop = True)…
1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍. 在Dataframe中选取数据大抵包括3中情况: 1)行(列)选取(单维度选取):df[].这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件). 2…
先创建一个reader.py,后面的程序将用到其中的函数. from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd def read_file(filname, sep="\t"): col_names = ["user", "item", "rate", "st&q…
# Pandas 知识点总结 # Pandas数据结构:Series 和 DataFrame import pandas as pd import numpy as np # 一,Series: # 1, 创建 Series pd.Series(列表或字典) # 1)使用列表创建Series: # 1-1)使用列表创建 Series,默认索引为从 0开始的数字: s_obj = pd.Series([4,7,-5,3]) s_obj # 0 4 # 1 7 # 2 -5 # 3 3 # dtyp…
实例 import pandas as pd data=pd.DataFrame({'产品':['A','A','A','A'],'数量':[50,50,30,30]}) 去重 data.drop_duplicates() # 去除重复数据 data.drop_duplicates().reset_index(drop=True) # 去除重复数据,并重新设置索引,舍弃原来的索引…
数据清洗时,会将带空值的行删除,此时DataFrame或Series类型的数据不再是连续的索引,可以使用reset_index()重置索引. import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape(5,4),index=[1,3,4,6,8]) print(df) 0 1 2 3 1 0 1 2 3 3 4 5 6 7 4 8 9 10 11 6 12 13 14 15 8 16 17 18 1…
一 set_index()函数 1 主要是理解drop和append参数,注意与reset_index()参数的不同. import pandas as pd df = pd.DataFrame({'a': range(4), 'b': range(4, 0, -1), 'c': ['one', 'one', 'two', 'two'], 'd': ['a','b','c','d']}) print(df) # a b c d # 0 0 4 one a # 1 1 3 one b # 2 2…
1.set_index() 作用:DataFrame可以通过set_index方法,将普通列设置为单索引/复合索引. 格式:DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 参数含义: keys:列标签或列标签/数组列表,需要设置为索引的普通列 drop:是否删除原普通列,默认为True,删除用作新索引的原普通列: append:是否变成复合索引,默认为False,即…
将两个 DataFrame 拼接后,想要对拼接后的 DataFrame 重新设置索引要用 reset_index 方法,要想让之前的索引消失,传入参数:drop=True.具体事例: data2017 = pd.read_csv('data\dataset\data20171207.csv', nrows=50, names=['std_mac', 'date', 'ap_mac', 'rss', 'timestamp']) data2018 = pd.read_csv('data\datase…
# -*- coding: utf-8 -*- import pandas as pd import sys df1 = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7']…
http://www.cnblogs.com/batteryhp/p/5046450.html 对数据进行分组并对各组应用一个函数,是数据分析的重要环节.数据准备好之后,通常的任务就是计算分组统计或生成透视表.groupby函数能高效处理数据,对数据进行切片.切块.摘要等操作.可以看出这跟SQL关系密切,但是可用的函数有很多.在本章中,可以学到: 根据一个或多个键(可以是函数.数组或DataFrame列名)拆分pandas对象 计算分组摘要统计,如计数.平均值.标准差.,或自定义函数 对Data…
from:http://analyticsbot.ml/2016/10/machine-learning-pre-processing-features/ Machine Learning : Pre-processing features October 21, 2016 I am participating in this Kaggle competition. It is a prediction problem contest. The problem statement is: How…
对于pandas中的Dataframe,如果需要按照列A进行分组,将同一组的列B求和,可以通过下述操作完成: df = df.groupby(by=['column_A'])['column_B'].sum() 生成的数据类型是Series,如果进一步需要将其转换为dataframe,可以调用Series中的to_frame()方法. df = df.to_frame() #index column_A #column_B ->column_B values 可以取出上述dataframe中的i…
概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的格式,这样我们就可以大概了解数据分析之前要做哪些“清理”工作. 本次我们需要一个 patient_heart_rate.csv (链接:https://pan.baidu.com/s/1geX8oYf 密码:odj0)的数据文件,这个数据很小,可以让我们一目了然.这个数据是 csv 格式.数据是描述…
主要在jupyter notebook里面熟悉这个库的使用,它的安装方法与实现,可自行搜索. Pandas是一个优秀的数据分析工具,官网:http://pandas.pydata.org/ 相关的库使用pip安装,用豆瓣的代理下载速度比官方的快,安装命令: pip install -i https://pypi.douban.com/simple/ matplotlib pip install -i https://pypi.douban.com/simple/ pandas pip insta…
类别不平衡就是指分类任务中不同类别的训练样例数目差别很大的情况 常用的做法有三种,分别是1.欠采样, 2.过采样, 3.阈值移动 由于这几天做的project的target为正值的概率不到4%,且数据量足够大,所以我采用了欠采样: 欠采样,即去除一些反例使得正.反例数目接近,然后再进行学习,基本的算法如下: def undersampling(train, desired_apriori): # Get the indices per target value idx_0 = train[tra…
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据的…
Pandas之Dataframe索引,排序,统计,重新设置索引 一:叠加 import pandas as pd a_list = [df1,df2,df3] add_data = pd.concat(a_list,ignore_index = True) 其中的ignore_index参数代表是否重新建立索引. 如果df比较多,可以采用如下方法建立a_list a_list = [] for i in range(len(df)): a_list.append(df[i]) 二:排序 df.s…
Pandas介绍(panel + data + analysis) 为什么使用Pandas        便捷的数据处理能力        读取文件方便        封装了Matplotlib.Numpy的画图和计算 Pandas的核心数据结构(DataFrame+Panel+Series) 3大核心结构: DataFrame            Panel            Series 1.DataFrame DataFrame    结构:既有行索引,又有列索引的二维数组    属…
pandas 是 python 的数据分析处理库import pandas as pd 1.读取CSV.TXT文件 foodinfo = pd.read_csv("pandas_study.csv", encoding = "utf-8") 2.查看前N条.后N条信息 foodinfo.head(N) foodinfo.tail(N) 3.查看数据框的格式,是DataFrame还是ndarray print(type(foodinfo)) # 结果:<clas…
Python Data Analysis Library — pandas: Python Data Analysis Library https://pandas.pydata.org/ pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming l…
通达信zig函数的python实现 代码 # coding: utf-8 """ Created on Sat Jan 05 18:53:39 2019 http://www.pianshen.com/article/363258879/ @author: duanqs """ import numpy as np import tushare as ts import matplotlib.pyplot as plt ZIG_STATE_STA…
总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快捷方式 iat是iloc的快捷方式 建立测试数据集: import pandas as pd df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c'],'c': ["A","B","C"]}) p…
pandas的学习总结 作者:csj更新时间:2017.12.31 email:59888745@qq.com 说明:因内容较多,会不断更新 xxx学习总结: 回主目录:2017 年学习记录和总结 1.pandas简介2.pandas数据结构 Series DataFrame Index csv文件读写3.常用函数: Group by Aggregate concat merge joinetc --------------------------------------------------…
信用风险计量体系包括主体评级模型和债项评级两部分.主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡.B卡.C卡和F卡:债项评级模型通常按照主体的融资用途,分为企业融资模型.现金流融资模型和项目融资模型等. 我们主要讨论主体评级模型的开发过程. 一.项目流程 典型的信用评分模型如图1-1所示.信用风险评级模型的主要开发流程如下: (1) 数据获取,包括获取存量客户及潜在客户的数据.存量客户是指已经在证券公司开展相关融资类业务的客户,包括个人客户和机构客户:…
删除行索引重排: ser.reset_index(drop = True) df.reset_index(drop = True) ------------------------------------------ 直接修列索引: df = pd.DataFrame(df,columns = ['One','Two','Three'])…
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作. Python 本文涉及Python数据框,为了更好的视觉效果,使用jupyter notebook作为演示的编辑器;Python中的数据框相关功能集成在数据分析相关包pandas中,下面对一些常用的关于数据框的知识进行说明: 1.数据框的创建 import pandas as pd from numpy import random a = [i for i i…
思路和上一篇差不多,先获取网站html文件,使用BeautifulSoup进行解析,将对应属性取出,逐一处理,最后把整理出的记录保存到oracle中,持久化储存. '''Created on 2017年2月20日 @author: Administrator'''from urllib import parse, requestfrom bs4 import BeautifulSoupfrom sqlalchemy import create_enginefrom datetime import…
完整资料:[数据挖掘入门介绍] (https://github.com/YouChouNoBB/data-mining-introduction) # coding=utf-8 # @author: bryan import pandas as pd import numpy as np import pymysql #缩写 # df 任意的Pandas DataFrame对象 # s 任意的Pandas Series对象,表示一列 #导入数据 filename='D:/IJCAI/file.c…