本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,geopandas作为在Python中开展GIS分析的利器,可以帮助我们快捷地解决很多日常GIS操作需求.而我们平时工作研究中使用到的各种矢量数据,由于原始数据加工过程的不规范等问题,偶尔会导致某些要素自身的矢量数据信息非法. 这样的非法要素读到geopandas或是PostGIS等常用GIS工具中,在进行一些矢量计算操作时会触…
本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 国庆期间,抽空给大家分享在geopandas中叠加各种在线瓦片底图的方法,来制作出更多样式的地图作品.话不多说,我们直接进入正题. 图1 2 在geopandas中叠加在线地图 我们需要配合contextily这个第三方库来辅助geopandas叠加在线地图,在geopandas已经被正确安装的情况下,使用pip install contexti…
一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹配的基本格式如下: data match { case ... => 执行语句 case ... => 执行语句 case _  => 执行语句 } 其中,data表示将要进行模式匹配的对象,match是模式匹配的关键字,后面紧跟的{}中包含若干条匹配的方向,且只会匹配其中满足条件的第一条:…
一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供了一系列方法来完成几乎全部类型的文本信息的处理工作,下面一一介绍: 二.re.compile() 在前一篇文章中我们使用过这个方法,它通过编译正则表达式参数,来返回一个目标对象的匹配模式,进而提高了正则表达式的效率,主要参数如下: pattern:输入的欲编译正则表达式,需将正则表达式包裹在''内传…
本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 最近一段时间(本文写作于2020-07-10)geopandas与geoplot两个常用的GIS类Python库都进行了一系列较为重大的内容更新,新增了一些特性,本文就将针对其中比较实际的新特性进行介绍. 2 geopandas&geoplot近期重要更新内容 2.1 geopandas近期重要更新 2.1.1 新增高性能文件格式 从geo…
本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在几天前,geopandas释放了其最新正式版本0.9.0,作为一次比较大的版本更新,geopandas为我们带来了一系列新特性,今天的文章我们就来一起看看有哪些主要的功能变化吧~ 图1 2 geopandas 0.9.0重要新特性一览 出于对稳定性的考虑,我选择新建虚拟环境来探索新版本geopandas,完整命令如下(顺便一提,0.9.0版本…
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在前不久,我们非常熟悉的Python地理空间分析库geopandas更新到了0.10.0版本,而伴随最近一段时间其针对新版本的一些潜在bug进行的修复,写作本文时最新的正式版本为0.10.2.此次0.10.x版本为我们带来了诸多令人兴奋的新功能新特性,本文就将带大家一睹其中一些比较重要的内容. 2 geopandas 0.10版本重要新特…
一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常常需要对原始变量进行一系列的预处理及筛选,剔除掉冗杂无用的成分,得到较为满意的训练集,才会继续我们的学习任务,这就是我们常说的特征选取(feature selection).本篇就将对常见的特征选择方法的思想及Python的实现进行介绍: 二.方法综述 2.1 去除方差较小的变量 这种方法针对离散型…
在获取数据,并且完成数据的清洗之后,首要的事就是对整个数据集进行探索性的研究,这个过程中会利用到各种描述性统计量和推断性统计量来初探变量间和变量内部的基本关系,本篇笔者便基于R,对一些常用的数据探索方法进行总结: 1.描述性统计量部分 1.1 计算描述性统计量的常规方法 summary() summary()函数提供了最小值.最大值.四分位数和数值型变量的均值,以及因子向量和逻辑型向量的频数统计: > #挂载鸢尾花数据 > data(iris) > #计算鸢尾花各变量的基本描述统计量 &…
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一期文章中我们一起学习了在Python中如何使用jsonpath库,对JSON格式数据结构进行常规的节点条件查询,可以满足日常许多的数据处理需求. 而在上一期结尾处,我提到了还有其他JSONPath功能相关的进阶Python库,在今天的文章中,我就将带大家学习更加高级的JSON数据处理方式. 2 基于jsonpath-ng的进阶JSON…