公号:码农充电站pro 主页:https://codeshellme.github.io 在数据分析领域有一个经典的故事,叫做"尿布与啤酒". 据说,在美国西部的一家连锁超市发现,很多男人会在周四购买尿布和啤酒.这样超市就可以将尿布与啤酒放在一起卖,便可以增加销售量. "尿布与啤酒"这个案例就属于数据分析中的关联分析,也就是分析数据集中的内在隐含关系. 关联分析可以被用于发掘商品与商品之间的内在关联关系,进而通过商品捆绑销售或者相互推荐,来增加商品销量. 关联分析除…
1 算法思想 算法使用频繁项集性质的先验知识.Apriori使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描数据库,累积每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合.该集合记作L1.然后,L1用于找频繁2项集的集合L2,L2用于找L3,如此迭代,直到不能再找到频繁k项集.找每个Lk需要一次数据库全扫描. Apriori性质可用于压缩搜索空间,提高频繁项集逐层产生的效率. Apriori性质:频繁项集的所有非空子集也必是频繁的. Apriori算法主要包…
Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集. 关于这个算法有一个非常有名的故事:"尿布和啤酒".故事是这样的:美国的妇女们经常会嘱咐她们的丈夫下班后为孩子买尿布,而丈夫在买完尿布后又要顺 手买回自己爱喝的啤酒,因此啤酒和尿布在一起被购买的机会很多.这个举措使尿布和啤酒的销量双双增加,并一直为众商家所津津乐道. 关联规则应用: 1. Apriori算法应用广泛,可用于消费市场价格分析,猜测顾客的消费习惯,比如较…
整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书<啤酒与尿布>,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理.我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念: TID Items T1 {牛奶,面包…
一.关联规则简介 关联规则挖掘的目标是发现数据项集之间的关联关系,是数据挖据中一个重要的课题.关联规则最初是针对购物篮分析(Market Basket Analysis)问题提出的.假设超市经理想更多地了解顾客的购物习惯,特别是想知道,哪些商品顾客可能会在一次购物时同时购买?为回答该问题,可以对商店的顾客购买记录进行购物篮分析.该过程通过发现顾客放入"购物篮"中的不同商品之间的关联,分析顾客的购物习惯.这种关联的发现可以帮助零售商了解哪些商品频繁地被顾客同时购买,从而帮助他们开发更好的…
转自:http://www.cnblogs.com/fengfenggirl/p/associate_apriori.html 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法 我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和 Aprori 算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了…
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描写叙述的是在一个事物中物品间同一时候出现的规律的知识模式,现实生活中,比方超市购物时,顾客购买记录经常隐含着非常多关联规则.比方购买圆珠笔的顾客中有65%也购买了笔记本.利用这些规则.商场人员能够非常好的规划商品摆放问题: 为叙述方便.设R= { I1,I2 ......Im} 是一组物品集…
APRIORI Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集.而且算法已经被广泛的应用到商业.网络安全等各个领域. Apriori算法   是一种最有影响的挖掘布尔关联规则频繁项集的算法.其核心是基于两阶段频集思想的递推算法.该关联规则在分类上属于单维.单层.布尔关联规则.在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集. 算法思想 该算法的基本思想[2]  是:首先找出所有的频集,这些项集出现的频繁性至少和…
Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策.比如在常见的超市购物数据集,或者电商的网购数据集中,如果我们找到了频繁出现的数据集,那么对于超市,我们可以优化产品的位置摆放,对于电商,我们可以优化商品所在的仓库位置,达到节约成本,增加经济效益的目的.下面我们就对Apriori算法做一个总结. 1. 频繁项集的评估标准 什么样的数据才是频繁项集呢?也许你会说,这还不简单,肉眼一扫,一起出现次数多的数据集就是频繁项…
导读: 随着大数据概念的火热,啤酒与尿布的故事广为人知.我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可以告诉我们.本文首先对Apriori算法进行简介,而后进一步介绍相关的基本概念,之后详细的介绍Apriori算法的具体策略和步骤,最后给出Python实现代码. 1.Apriori算法简介 Apriori算法是经典的挖掘频繁项集和关联规则的数据挖掘算法.A priori在拉丁语中指"来自以前".当定义问题时,通常会使用先验知识…