Hadoop的各个服务间,客户端和服务间的交互采用RPC方式.关于这种机制介绍的资源很多,也不难理解,这里不做背景介绍.只是尝试从Jobclient向JobTracker提交作业这个最简单的客户端服务器交互的代码中,去跟踪和了解下RPC是怎么被使用的.不同于准备发表博客时搜索的几篇博文,试图通过一种具体的场景来介绍,属于比较初级.其他DataNode和Namenode之间,Tasktracker和JobTracker之间的交互基本也都一样.为了引用的代码篇幅尽可能少,忽略了代码中写日志(包括Me…
一.概述 在本篇博文中,试图通过代码了解hadoop job执行的整个流程.即用户提交的mapreduce的jar文件.输入提交到hadoop的集群,并在集群中运行.重点在代码的角度描述整个流程,有些细节描述的并不那么详细. 汇总的代码流程图附件: hadoop_mapreduce_jobsubmit 二.主要流程 Jobclient通过RPC方式调用到jobtracker的submitJob方法提交作业,包括作业的jar.分片和作业描述. JobTracker的submitJob方法吧job加…
整理09年时候做的Hadoop的代码笔记. 开始. [Hadoop代码笔记]Hadoop作业提交之客户端作业提交 [Hadoop代码笔记]通过JobClient对Jobtracker的调用看详细了解Hadoop RPC 待续..…
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从代码分析来说明在map端是如何将map的输出保存下来等待reduce来取. 在执行每个map task时,无论map方法中执行什么逻辑,最终都是要把输出写到磁盘上.如果没有reduce阶段,则直接输出到hdfs上,如果有有reduce作业,则每个map方法的输出在写磁盘前线在内存中缓存.每个map…
一.概要描述 本文重点描述在JobTracker一端接收作业.调度作业等几个模块的初始化工作.想过模块的介绍会在其他文章中比较详细的描述.受理作业提交在下一篇文章中会进行描述. 为了表达的尽可能清晰一点只是摘录出影响逻辑流转的主要代码.重点强调直接的协作调用,每个内部完成的逻辑(一直可以更细的说明.有些细节可能自己也理解并不深刻:-()在后续会描述. 主要包括JobTracker.TaskScheduler(此处以FairScheduler为例).JobInProgressListener(以用…
1.      概要描述仅仅描述向Hadoop提交作业的第一步,即调用Jobclient的submitJob方法,向Hadoop提交作业. 2.      详细描述Jobclient使用内置的JobSubmissionProtocol 实例jobSubmitClient 和JobTracker交互,最主要是提交作业.获取作业执行信息等. 在JobClient中作业提交的主要过程如下: 1)通过调用JobTracker的getNewJobId()向jobtracker请求一个新的作业ID2)获取j…
一.概要描述 在上上一篇博文和上一篇博文中分别描述了jobTracker和其服务(功能)模块初始化完成后,接收JobClient提交的作业,并进行初始化.本文着重描述,JobTracker如何选择作业的Task分发到TaskTracker.本文只是描述一个TaskTracker如何从JobTracker获取Task任务.Task任务在TaskTracker如何执行将在后面博文中描述. 二. 流程描述   1. TaskTracker在run中调用offerService()方法一直死循环的去连接…
hadoop百度百科:https://baike.baidu.com/item/Hadoop/3526507?fr=aladdin hadoop官网:http://hadoop.apache.org/ 本文结构如下: 安装hadoop前的准备工作 1.1 创建新用户 1.2 更新APT 1.3 安装SSH 1.4 安装Java环境 2.安装和配置hadoop 2.1 hadoop下载 2.2 hadoop为分布式模式配置   3.问题总结 1.安装hadoop前的准备工作 1.1创建hadoop…
一.概要描述 在上一篇博文中主要描述了JobTracker接收作业的几个服务(或功能)模块的初始化过程.本节将介绍这些服务(或功能)是如何接收到提交的job.本来作业的初始化也可以在本节内描述,但是涉及到JobInProgress的初始化过程放在一张图上太拥挤,就分开到下一篇文章中描述. 二. 流程描述   1. JobClient通过RPC的方式向JobTracker提交作业: 2. 调用JobTracker的submitJob方法.该方法是JobTracker向外提供的供调用的提交作业的接口…
一.概要描述 在上一篇博文中主要描述了JobTracker和其几个服务(或功能)模块的接收到提交的job后的一些处理.其中很重要的一部分就作业的初始化.因为代码片段图的表达问题,本应该在上篇描述的内容,分开在本篇描述. 二. 流程描述   1. 代码也接上文的最后一个方法 EagerTaskInitializationListener的jobAdded方法把JobInProgress类型的job放到List<JobInProgress>类型的 jobInitQueue中,有个单独的线程会对新加…
一.概要描述 在上篇博文描述了TaskTracker启动一个独立的java进程来执行Map任务.接上上篇文章,TaskRunner线程执行中,会构造一个java –D** Child address port tasked这样第一个java命令,单独启动一个java进程.在Child的main函数中通过TaskUmbilicalProtocol协议,从TaskTracker获得需要执行的Task,并调用Task的run方法来执行.在ReduceTask而Task的run方法会通过java反射机制…
一.概要描述 在上篇博文描述了TaskTracker启动一个独立的java进程来执行Map或Reduce任务.在本篇和下篇博文中我们会关注启动的那个入口是org.apache.hadoop.mapred.Child的这个Java进程是如何执行用户定义的map或Reduce任务的. 接上篇文章,TaskRunner线程执行中,会构造一个java –D** Child address port tasked这样第一个java命令,单独启动一个java进程.在Child的main函数中通过TaskUm…
一.概要描述 在上篇博文描述了TaskTracker从Jobtracker如何从JobTracker获取到要执行的Task.在从JobTracker获取到LaunchTaskAction后,执行addToTaskQueue方法来把要执行的Task加入到queue.在本篇博文中,我们来关注下该方法后,TaskTracker怎么来处理这些Task. 实际上,TaskTracker初始化时,会初始化并启动两个TaskLauncher类型的线程,mapLauncher,reduceLauncher.在T…
在整理FairScheduler实现的task调度逻辑时,注意到EagerTaskInitializationListener类.差不多应该是job提交相关的逻辑代码中最简单清楚的一个了. todo:标红文字表示要加前向链接,待相关文字草稿提交后. 一.概述 继承自JobInProgressListener,实现了jobAdded,jobRemoved,jobUpdated方法.哦,不能说实现,应该说继承,JobInProgressListener居然是个抽象类,看着怎么这样的listener也…
1. Hadoop Eclipse @ 配置 需注意 在写Hadoop的根目录时,路径不能有空格 http://blog.sina.com.cn/s/blog_56d8111101014mlg.html @ 使用…
Hadoop学习笔记(9) ——源码初窥 之前我们把Hadoop算是入了门,下载的源码,写了HelloWorld,简要分析了其编程要点,然后也编了个较复杂的示例.接下来其实就有两条路可走了,一条是继续深入研究其编程及部署等,让其功能使用的淋漓尽致.二是停下来,先看看其源码,研究下如何实现的.在这里我就选择第二条路. 研究源码,那我们就来先看一下整个目录里有点啥: 这个是刚下完代码后,目录列表中的内容. 目录/文件 说明 bin 下面存放着可执行的sh命名,所有操作都在这里 conf 配置文件所在…
以下是hadoop学习笔记的顺序: hadoop学习笔记(一):概念和组成 hadoop学习笔记(二):centos7三节点安装hadoop2.7.0 hadoop学习笔记(三):hdfs体系结构和读写流程(转) hadoop学习笔记(四):hdfs常用命令 hadoop学习笔记(五):java api 操作hdfs hadoop学习笔记(六):HBase体系结构和数据模型…
一.基本概念 在MapReduce中,一个准备提交执行的应用程序称为“作业(job)”,而从一个作业划分出的运行于各个计算节点的工作单元称为“任务(task)”.此外,Hadoop提供的分布式文件系统(HDFS)主要负责各个节点的数据存储,并实现了高吞吐率的数据读写. 在分布式存储和分布式计算方面,Hadoop都是用主/从(Master/Slave)架构.在一个配置完整的集群上,想让Hadoop这头大象奔跑起来,需要在集群中运行一系列后台程序.不同的后台程序扮演不用的角色,这些角色由NameNo…
时至今日,已然看到第十章,似乎越是焦躁什么时候能翻完这本圣经的时候也让自己变得更加浮躁,想想后面还有一半的行程没走,我觉得这样“有口无心”的学习方式是不奏效的,或者是收效甚微的.如果有幸能有大牛路过,请指教如何能以效率较高的方式学习Hadoop. 我已经记不清圣经<hadoop 实战2>在我手中停留了多久,但是每一页每一章的翻过去,还是在脑壳里留下了点什么. 一段时间以来,我还是通过这本书加深以及纠正了我对于MapReduce.HDFS乃至Hadoop的新的认识.本篇主要介绍MapReduce…
继上篇了解了使用MapReduce计算平均数以及去重后,我们再来一探MapReduce在排序以及单表关联上的处理方法.在MapReduce系列的第一篇就有说过,MapReduce不仅是一种分布式的计算方法,更是一种解决问题的新思维.新思路.将原先看似可以一条龙似的处理一刀切成两端,一端是Map.一端是Reduce,Map负责分,Reduce负责合. 1.MapReduce排序 问题模型: 给出多个数据文件输入如: sortfile1.txt 11 13 15 17 19 21 23 25 27…
前言:圣诞节来了,我怎么能虚度光阴呢?!依稀记得,那一年,大家互赠贺卡,短短几行字,字字融化在心里:那一年,大家在水果市场,寻找那些最能代表自己心意的苹果香蕉梨,摸着冰冷的水果外皮,内心早已滚烫.这一年……我在博客园-_-#,希望用dt的代码燃烧脑细胞,温暖小心窝. 上篇<Hadoop阅读笔记(一)——强大的MapReduce>主要介绍了MapReduce的在大数据集上处理的优势以及运行机制,通过专利数据编写Demo加深了对于MapReduce中输入输出数据结构的细节理解.有了理论上的指导,仍…
Hadoop简介和历史 Hadoop架构体系 Master和Slave节点 数据分析面临的问题和Hadoop思想 由于工作原因,必须学习和深入一下Hadoop,特此记录笔记. 什么是hadoop? Apache Hadoop是一款支持数据密集型分布式应用并以Apache 2.0许可协议发布的开源软件框架.它支持在商品硬件构建的大型集群上运行的应用程序.Hadoop是根据Google公司发表的MapReduce和Google档案系统的论文自行实作而成. Hadoop框架透明地为应用提供可靠性和数据…
前言:来园子已经有8个月了,当初入园凭着满腔热血和一脑门子冲动,给自己起了个响亮的旗号“大数据 小世界”,顿时有了种世界都是我的,世界都在我手中的赶脚.可是......时光飞逝,岁月如梭~~~随手一翻自己的博客,可视化已经快占据了半壁江山,思来想去,还是觉得把一直挂在嘴头,放在心头的大数据拿出来说说,哦不,是拿过来学学.入园前期写了有关Nutch和Solr的自己的一些阅读体会和一些尝试,挂着大数据的旗号做着爬虫的买卖.可是,时间在流失,对于大数据的憧憬从未改变,尤其是Hadoop一直让我魂牵梦绕…
1.        MapReduce程序开发步骤 编写map 和 reduce 程序–> 单元测试 -> 编写驱动程序进行验证-> 本地数据集调试 ->  部署到集群运行 用到的工具: Junit.Mockito.Ant 2.        使用Configuration 关键点: 1.  Configuration类可以加载配置文件,包括系统的和自定义的 2.  addResource方法后面的配置文件会覆盖前面的 3.  配置文件的几个特性:name.value.descri…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…
Hadoop学习笔记(1) ——菜鸟入门 Hadoop是什么?先问一下百度吧: [百度百科]一个分布式系统基础架构,由Apache基金会所开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高传输率(high throughput)来访问应用程序…
 课程安排 MapReduce原理*** MapReduce执行过程** 数据类型与格式*** Writable接口与序列化机制*** ---------------------------加深拓展---------------------- MapReduce的执行过程源码分析 问题:怎样解决海量数据的计算?  MapReduce概述 lMapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题. lMR由两个阶段组成:Map和Reduce,用户只需要…
Hadoop学习笔记(1) ——菜鸟入门 Hadoop是什么?先问一下百度吧: [百度百科]一个分布式系统基础架构,由Apache基金会所开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高传输率(high throughput)来访问应用程序…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…