Spark Streaming揭秘 Day6 关于SparkStreaming Job的一些思考 Job是SparkStreaming的重要基础,今天让我们深入,进行一些思考. Job是什么? 首先,有个挺重要的概念要区分下,就是SparkStreaming中的Job和Spark core的Job并不相同,可以认为SparkStreaming中的Job是一个应用程序,不同于Spark core中的Job. 从Job的的定义来看,类似于一个Java Bean,核心是其run方法,相当于Java中线…
Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过程. 从框架代码开始 我们从生成Job开始,generateJobs方法产生了Job,之后,提交了一个JobSet来进行处理. JobSet会根据输出情况来确定Job数量,有多少个输出就有多少个Job,在我们的演示代码中,只有一个outputDStream,所以job是一个.jobExecutor…
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28已经分析过local模式下的日志,集群模式会比较类似,这次主要是对集群模式在的web监控台,进行统一的深度刨析. 我们从wordcount程序开始,代码如下,为了展示出SparkStreaming在集群中的运行,Batch Duration设置为5分钟. 系统作业 为了观察持续运行的情况,我们运行了…
Spark Streaming揭秘 Day34 解析UI监听模式 今天分享下SparkStreaming中的UI部分,和所有的UI系统一样,SparkStreaming中的UI系统使用的是监听器模式.监听器模式是指,首先注册事件源,当事件或者数据发生改变时,监听器就会接收到这个改变,并对这种改变做出响应,监听器模式可以简单的理解为一种MVC的模式. SparkStreaming中的UI系统有两个非常的支持,就是处理时间process time和Batch等待时间Scheduler Delay.一…
Spark Streaming揭秘 Day33 checkpoint的使用 今天谈下sparkstreaming中,另外一个至关重要的内容Checkpoint. 首先,我们会看下checkpoint的使用.另外,会看下在应用程序重新启动时,是如何处理checkpoint的. Checkpoint保存什么 checkpoint作为容错的设计,基本思路是把当前运行的状态,保存在容错的存储系统中(一般是hdfs).对于容错的处理,肯定是围绕作业紧密相关的,保存内容包括元数据和数据两部分. 从元数据角度…
Spark Streaming揭秘 Day32 WAL框架及实现 今天会聚焦于SparkStreaming中非常重要的数据安全机制WAL(预写日志). 设计要点 从本质点说,WAL框架是一个存储系统,可以简单的认为是一个文件系统,其作用类似于BlockManager, 我们首先看一下官方的说明: 这里有三个要点: 总体上,sparksteaming是用WAL去保存接收到的数据,并且在写入数据后,要把元数据汇报给Driver,这样失败了才能恢复起来. 每当写入一个log,就返回一个handle,h…
Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为Structured Streaming,和之前的很不同,功能更强大,效率更高,跟其他的组件整合性也更好. 连续应用程序continuous application 首先,也是最重要的,在2.x中,提出了一个叫做continuous applications连续应用程序的概念. 如下图所示,数据从Kaf…
Spark Streaming揭秘 Day28 在集成开发环境中详解Spark Streaming的运行日志内幕 今天会逐行解析一下SparkStreaming运行的日志,运行的是WordCountOnline这个Demo. 启动过程 SparkStreaming启动是从如下日志开始: 16/06/16 21:26:44 INFO ReceiverTracker: Starting 1 receivers 16/06/16 21:26:44 INFO ReceiverTracker: Recei…
Spark Streaming揭秘 Day26 JobGenerator源码图解 今天主要解析一下JobGenerator,它相当于一个转换器,和机器学习的pipeline比较类似,因为最终运行在SparkCore上,作为应用程序,需要开发者提供一些信息才能够运行. 简述 JobGenerator这个类会负责从DStream中产生Jobs,同时进行checkpoint和清理数据. JobGenerator的核心是一个钟,这里采用反射生成,并提供给定时器,根据周期性触发事件 generateJob…
Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解 今天主要理一下StreamingContext的启动过程,其中最为重要的就是JobScheduler的启动. StreamingContext启动 我们首先看下start方法的上半部分. 首先进行模式匹配,这是一个标准的条件判断,默认是INITIALIZED状态. 这里有三个关键部分: validate方法,会进行一些前置条件的判断.其中比较关键的是对DStreamGraph进…