CF - 1110 C Meaningless Operations】的更多相关文章

题目传送门 题解: 首先根据观察,很容易发的是: x != (1<<k) - 1 时候 答案就是, 将x二进制下再最高位后的0都变成1. 然后就是考虑 x == (1<<k) - 1的时候 同样根据观察可以得到  b ^ x =  x - b, b&x = b 所以就是将x拆成2个数, 然后这2个数的gcd最大. 我们就最后找x的因子. 如 x = b * c 那么们就可以把2个数分成 c , (b-1) * c,gcd 为 c. 或者 b , b * (c-1)   gc…
C. Meaningless Operations time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Can the greatest common divisor and bitwise operations have anything in common? It is time to answer this question.…
CF 1110 D. Jongmah 题目大意:给你​\(n\)个瓷砖,每块瓷砖上有一个数字​\(a_i,(1\leq a_i\leq m)\).你可以将三个有连续数字​\((比如3,4,5)\)的瓷砖或者三个数字相同​\((比如7,7,7)\)的瓷砖组成一个三元组.每个瓷砖只能用一次.问最多可以得到多少个三元组.​ 比赛的时候好像全场A穿,然而并没有想到 (TAT. 一开始想到\(DP\),但是​觉得状态数太大:于是想了奇奇怪怪的贪心,但是都能找到反例. 这道题的关键是要发现一个性质:同一位置…
这可能是我打那么多次CF比赛时,做出来的最难的一道题了……而且这题也是个绝世好题…… 题目链接:CF原网  洛谷 题目大意:$q$ 组询问,每次给定 $a$ 询问 $\gcd(a\&b,a\oplus b)$ 的最大值,其中 $1\le b<a$.规定 $\gcd(a,0)=a$. 真的是神仙题…… 打几个表,我们发现如果 $a$ 的二进制表示中含有 $0$,比如 $100101100...$,也就是说不能表示成 $2^k-1$,那么他的答案就是所有 $2^k-1$ 中比 $a$ 大的最小的…
哇真难啊,没注意到 可以开 dp[N][3][3]这种性质,也就是三个相同的顺子可以变成三个刻子,所以我们维护顺子的数目就不用超过三了,又因为每张牌i,只会被i-1,i-2,影响,所以额外开两维记录(记录的信息在下面)就够了. 开始也想到了对子和顺子那题,,但是那题记得学长讲的是堆栈做法,,,这个一看就是dp,就感觉很卜. 哇雀魂白玩了!雀魂!卸载! 看的官方题解,还是挺好懂的. 意思就是 用 f[i][t1][t2] 表示到考虑到i这个位置, t1表示[i-1,i,i+1]的数量,t2表示[i…
E. Magic Stones 链接 题意: 给定两个数组,每次可以对一个数组选一个位置i($2 \leq i \leq n - 1$),让a[i]=a[i-1]+a[i+1]-a[i],或者b[i]=b[i-1]+b[i+1]-b[i].问进行一些操作后,a和b能否相同. 分析: 考虑一次操作会变成什么样子. a b c a a+c-b c 我们发现这些数字差分后是不变的.于是对两个数组差分后,排序,看是否一样即可.注意判一下1和n是否相等. 代码: #include<cstdio> #in…
D. Jongmah 链接 题意: 一些数字,有两种方式组成一个三元组,[x,x,x],[x,x+1,x+2],每个数字只能用一次,求最多组成多少三元组. 分析: 因为每三个[x,x+1,x+2]是可以拆成[x,x,x],[x+1,x+1,x+1],[x+2,x+2,x+2]的,所以可以认为对于以x开始的[x,x+1,x+2]最多有两个. 于是可以dp[i][x][y]表示到第i个数字,存在x个[i-1,i,i+1],y个[i,i+1,i+2],最多组成多少个三元组(这些三元组的右端点在i以内,…
思路: 令x为满足2x <= a的最大的x.如果a的二进制表示中包含0,则将b构造为(2x+1 - 1) ^ a即可:否则gcd(a ^ b, a & b) = gcd(2x+1 - 1 - b, b) = gcd(2x+1 - 1, b),要令此式最大,b应为(2x+1 - 1)的最大非平凡因子. 实现: #include <bits/stdc++.h> using namespace std; inline int max_fac(int x) { ; i * i <=…
[链接] 我是链接,点我呀:) [题意] 给你一个a 让你从1..a-1的范围中选择一个b 使得gcd(a^b,a&b)的值最大 [题解] 显然如果a的二进制中有0的话. 那么我们就让选择的b的二进制中对应的位置为1 剩下全为0就好 这样a的二进制全都变成1之后就是答案了(gcd的右边是0). 但是如果a的二进制里面全是1的话. 就没办法这么构造了 这里有两种情况. ①.1的个数是偶数 那么就101010这样构造 另外一个数就是010101 答案就是010101转换成十进制 ②.1的个数是奇数…
题目大意 洛谷链接 现在两个人做游戏,每个人刚开始都是数字\(1\),谁赢了就能乘以\(k^2\),输的乘以\(k\),现在给你最终这两个人的得分,让你判断是否有这个可能,有可能的话输出Yes,否则输出No. 输入格式 第一行是数据组数\(n\). 接下来\(n\)行每行给出两个数\(a\)和\(b\),表示两个人的最终得分. 数据范围 \(1\le n\le 350000,1\le a,b\le 10^9\) 输出格式 输出\(n\)行分别为各组的结果. 样例输入 6 2 4 75 45 8…