linux tcp协议状态机】的更多相关文章

截图来自百度文库 TCP状态-有限状态机…
Linux /proc/sys/net/ipv4/* 变量 TCP变量:somaxconn - INTEGER    listen()的backlog参数的上限,在用户态为SOMAXCONN.默认是128.也可参考TCP socket调优的tcp_max_syn_backlog参数.    tcp_abort_on_overflow - BOOLEAN    如果监听服务太慢以致于不能接受新的连接了,就重置他们.默认值是FALSE.这意味着如果是因为一个burst而发生的溢出,连接可以恢复.只有…
RTO:重传超时时间 RTT:往返时间…
1 连接建立定时器:75秒 2 保活定时器:2小时又10分钟 3 重传定时器:根据RTT计算 4 2MSL定时器:最大报文段存活时间 5 持续定时器…
版权声明:本文由黄日成原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/73 来源:腾云阁 https://www.qcloud.com/community 说到TCP协议,相信大家都比较熟悉了,对于TCP协议总能说个一二三来,但是TCP协议又是一个非常复杂的协议,其中有不少细节点让人头疼点.本文就是来说说这些头疼点的,浅谈一些TCP的疑难杂症.那么从哪说起呢?当然是从三次握手和四次挥手说起啦,可能大家都知道TCP是三次交…
https://cloud.tencent.com/developer/article/1150971 前言 说到TCP协议,相信大家都比较熟悉了,对于TCP协议总能说个一二三来,但是TCP协议又是一个非常复杂的协议,其中有不少细节点让人头疼点.本文就是来说说这些头疼点的,浅谈一些TCP的疑难杂症.那么从哪说起呢?当然是从三次握手和四次挥手说起啦,可能大家都知道TCP是三次交互完成连接的建立,四次交互来断开一个连接,那为什么是三次握手和四次挥手呢?反过来不行吗? 疑症 1 :TCP 的三次握手.…
问题聚焦:     本节从如下四个方面讨论TCP协议:     TCP头部信息:指定通信的源端端口号.目的端端口号.管理TCP连接,控制两个方向的数据流     TCP状态转移过程:TCP连接的任意一端都是一个状态机     TCP数据流:两种主要类型:交互数据流,成块数据流     TCP数据流的控制:保证可靠传输和提高网络通信质量,两个方面:超时重传,拥塞控制 1 TCP服务的特点 传输层协议:TCP协议.UDP协议 TCP协议相对于UDP协议的特点:面向连接.字节流和可靠传输.      …
导读 本周三在得州奥斯丁举行的 USENIX 安全研讨会上,加州大学河滨分校研究生 Yue Cao 将报告一个严重的TCP协议边信道漏洞(PDF),该漏洞允许攻击者远程劫持任意两主机之间的会话.该漏洞影响Linux 3.6+ 内核,根据邮件列表的讨论内核已经在一个月前修复了漏洞. 互联网工程任务组在2010年发布了规格 RFC 5961,旨在解决TCP的盲窗攻击,但它同时引入了新的漏洞.漏洞的根源在于RFC 5961引入的 challenge ACK 响应和 TCP 控制封包的速率限制,该漏洞允…
第三章 IP协议详解 TCP协议是TCP/IP协议族中的另外一个重要的协议,与IP协议相比,TCP协议更高进应用层.一些重要的socket选项都和TCP协议相关.这一章主要从如下方面学习: 1)TCP头部信息:每一个TCP头部会出现在每一个TCP报文段中 2)TCP状态转移过程:TCP连接的端到端都存在一个状态,从连接到断开都会经历一些状态变迁 3)TCP数据流:TCP数据是基于流的(交互数据流.成块数据流) 4)TCP数据流的控制:TCP的可靠性体现出(超时重传.拥塞控制) 1.TCP和UDP…
Linux TCP/IP协议栈,数据发送接收流程,TCP协议特点 http://network.51cto.com/art/201909/603780.htm 可以毫不夸张的说现如今的互联网是基于TCP/IP构建起来的网络.弄懂协议栈的原理,无论对调试网络IO性能还是解决网络问题都是有很大帮助的.本片文章就带领大家来看看内核是如何控制网络数据流的. 作者:底层软件架构来源:今日头条|2019-09-30 09:28 收藏 分享 可以毫不夸张的说现如今的互联网是基于TCP/IP构建起来的网络.弄懂…
tcp协议本身是可靠的,并不等于应用程序用tcp发送数据就一定是可靠的.不管是否阻塞,send发送的大小,并不代表对端recv到多少的数据. 在阻塞模式下, send函数的过程是将应用程序请求发送的数据拷贝到发送缓存中发送并得到确认后再返回.但由于发送缓存的存在,表现为:如果发送缓存大小比请求发送的大小要大,那么send函数立即返回,同时向网络中发送数据;否则,send向网络发送缓存中不能容纳的那部分数据,并等待对端确认后再返回(接收端只要将数据收到接收缓存中,就会确认,并不一定要等待应用程序调…
1.0 Tcp / IP 背景介绍 上世纪70年代,随着计算机的发展,人们意识到如果想要发挥计算机的更大作用,就要讲世界各地的计算机连接起来. 但是简单的连接时不够的,因为计算机之间无法沟通.因此设计一种通用的交流语言时必不可少的,所以TCP/IP协议就诞生了. TCP/IP是 传输协议和网络协议的简称,定义了电子设备如何接入互联网,以及数据如何在它们之间传输的标准. TCP/IP不是一个协议,是一个协议族的统称.包含了IP协议,ICMP协议,TCP协议,以及HTTP,FTP,POP3协议等.网…
http://www.vckbase.com/index.php/wv/10http://blog.csdn.net/zlzlei/article/details/7689409 文章一: 当前在网络传输应用中,广泛采用的是TCP/IP通信协议及其标准的socket应用开发编程接口(API).TCP/IP传输层有两个并列的协议:TCP和UDP.其中TCP(transport control protocol,传输控制协议)是面向连接的,提供高可靠性服务.UDP(user datagram pro…
https://zhidao.baidu.com/question/486077599.html 1.netstat命令的-t参数指的是 tcp的简写,意思是仅显示tcp相关选项2.示例:列出所有 tcp 端口 netstat -at # netstat -at Active Internet connections (servers and established) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0…
概述: TCP传输前先要建立连接 TCP在传输层 点对点,一条TCP只能连接两个端点 可靠传输.无差错.不丢失.不重复.按顺序 全双工 字节流 TCP报文段 TCP报文段的报头前20字节是固定的,后面4n字节是根据需要而添加的. 20字节的固定部分: 源端口和目的端口:分别写入源端口号和目的端口号 序号:0-(2^32-1),本报文段数据的第一个字节的序号,用来解决乱序问题 确认序号:期望收到对方下一个报文段的第一个数据字节的序号,用来解决丢包问题 数据偏移:TCP报头长度,包括固定的20字节和…
    在Linux上做网络应用的性能优化时,一般都会对TCP相关的内核参数进行调节,特别是和缓冲.队列有关的参数.网上搜到的文章会告诉你需要修改哪些参数,但我们经常是知其然而不知其所以然,每次照抄过来后,可能很快就忘记或混淆了它们的含义.本文尝试总结TCP队列缓冲相关的内核参数,从协议栈的角度梳理它们,希望可以更容易的理解和记忆.注意,本文内容均来源于参考文档,没有去读相关的内核源码做验证,不能保证内容严谨正确.作为Java程序员没读过内核源码是硬伤. 下面我以server端为视角,从 连接建…
(上) TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面.所以学习TCP本身是个比较痛苦的过程,但对于学习的过程却能让人有很多收获.关于TCP这个协议的细节,我还是推荐你去看W.Richard Stevens的<TCP/IP 详解 卷1:协议>(当然,你也可以去读一下RFC793以及后面N多的RFC).另外,本文我会使用英文术语,这样方便你通过这些英文关键词来查找相关的技术文档. 之所以想写这篇文章,目的有三个, 一个是想锻炼一下自己是否可以用简单的篇幅把这…
作者:阿里技术保障锋寒 原文:https://yq.aliyun.com/articles/4252 摘要: 本文尝试总结TCP队列缓冲相关的内核参数,从协议栈的角度梳理它们,希望可以更容易的理解和记忆.注意,本文内容均来源于参考文档,没有去读相关的内核源码做验证,不能保证内容严谨正确.作为Java程序员没读过内核源码是硬伤. 在Linux上做网络应用的性能优化时,一般都会对TCP相关的内核参数进行调节,特别是和缓冲.队列有关的参数.网上搜到的文章会告诉你需要修改哪些参数,但我们经常是知其然而不…
问题聚焦:     本节从如下四个方面讨论TCP协议:     TCP头部信息:指定通信的源端端口号.目的端端口号.管理TCP连接,控制两个方向的数据流     TCP状态转移过程:TCP连接的任意一端都是一个状态机     TCP数据流:两种主要类型:交互数据流,成块数据流     TCP数据流的控制:保证可靠传输和提高网络通信质量,两个方面:超时重传,拥塞控制 1 TCP服务的特点 传输层协议:TCP协议,UDP协议 TCP协议特点:面向连接,字节流和可靠传输     先建立连接,才能开始读…
TCP头格式 注意以下几点: TCP的包是没有IP地址的,那是IP层上的事.但是有源端口和目标端口. 一个TCP连接需要四个元组来表示是同一个连接(src_ip, src_port, dst_ip, dst_port)准确说是五元组,还有一个是协议.但因为这里只是说TCP协议,所以,这里我只说四元组. 注意上图中的四个非常重要的东西: Sequence Number是包的序号,用来解决网络包乱序(reordering)问题. Acknowledgement Number就是ACK——用于确认收到…
系列文章: 网络协议 1 - 概述 网络协议 2 - IP 是怎么来,又是怎么没的? 网络协议 3 - 从物理层到 MAC 层 网络协议 4 - 交换机与 VLAN:办公室太复杂,我要回学校 网络协议 5 - ICMP 与 ping:投石问路的侦察兵 网络协议 6 - 路由协议:敢问路在何方? 网络协议 7 - UDP 协议:性善碰到城会玩     上次说了"性本善"的 UDP 协议,这哥们秉承"网之初,性本善,不丢包,不乱序"的原则,徜徉在网络世界中.     与…
TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面.所以学习TCP本身是个比较痛苦的过程,但对于学习的过程却能让人有很多收获. 关于TCP这个协议的细节,我还是推荐你去看W.Richard Stevens的<TCP/IP 详解 卷1:协议>(当然,你也可以去读一下RFC793以及后面N多的RFC).另外,本文我会使用英文术语,这样方便你通过这些英文关键词来查找相关的技术文档. 之所以想写这篇文章,目的有三个: 一个是想锻炼一下自己是否可以用简单的篇幅把这么复杂…
上次说了“性本善”的 UDP 协议,这哥们秉承“网之初,性本善,不丢包,不乱序”的原则,徜徉在网络世界中.     与之相对应的,TCP 就像是老大哥一样,了解了社会的残酷,变得复杂而成熟,秉承“性恶论”.它认为网络环境是恶劣的,丢包.乱序.重传.拥塞都是常有的事儿,一言不合可能就会丢包,送达不了,所以从算法层面来保证可靠性. TCP 包头格式     老规矩,咱们先来看看 TCP 头的格式.     从上面这个图可以看出,它比 UDP 要复杂的多.而复杂的地方,也正是它为了解决 UDP 存在的…
1 概述 TCP提供可靠的运输层. 可靠性保证之一:确认从另一端收到的数据. 但数据和确认都有可能会丢失.TCP通过在发送时设置一个定时器来解决这种问题. 如果当定时器溢出时还没有收到确认,它就重传该数据. TCP对于每个连接TCP管理4个不同的定时器: 重传定时器:使用于当希望收到另一端的确认. 2MSL定时器:测量一个连接处于TIME_WAIT状态的时间. 坚持(persist)定时器:使窗口大小信息保持不断流动,即使另一端关闭了其接收窗口 保活(keepalive)定时器:用于检测一个空闲…
TCP 协议是 更靠近应用层,因此在应用程序中具有更强可操作性,一些重要 socket 选项都和 TCP 协议相关. TCP 头部信息:TCP 头部信息出现在每个 TCP 报文段中,用于指定通信的源端端口号.目的端端口号.管理 TCP 连接.控制两个方向的数据流. TCP 状态转移信息:TCP 连接的任意一端都是一个状态机.在 TCP 连接从建立到断开的整个过程中,连接两端的状态机将经历不同的状态变迁. TCP 数据流:通过分析 TCP 数据流,我们可以从网络应用程序外部来了解应用层协议和通信双…
第11讲 | TCP协议(上):因性恶而复杂,先恶后善反轻松 TCP 包头格式 我们先来看 TCP 头的格式.从这个图上可以看出,它比 UDP 复杂得多. 首先,源端口号和目标端口号是不可少的,这一点和 UDP 是一样的.如果没有这两个端口号.数据就不知道应该发给哪个应用. 接下来是包的序号.为什么要给包编号呢?当然是为了解决乱序的问题.不编好号怎么确认哪个应该先来,哪个应该后到呢.编号是为了解决乱序问题.既然是社会老司机,做事当然要稳重,一件件来,面临再复杂的情况,也临危不乱. 还应该有的就是…
TCP是什么? TCP(Transmission Control Protocol 传输控制协议)是一种面向连接(连接导向)的.可靠的. 基于IP的传输层协议.TCP在IP报文的协议号是6.TCP是一个超级麻烦的协议,而它又是互联网的基础,也是每个程序员必备的基本功.首先来看看OSI的七层模型: 我们需要知道TCP工作在网络OSI的七层模型中的第四层--Transport层,IP在第三层--Network层,ARP 在第二层--Data Link层;在第二层上的数据,我们把它叫Frame,在第三…
最近工作中需要做TCP层面的负载均衡,以前网站用的反向代理nginx只支持应用层的负载均衡,对于TCP协议是无能为力的,需要使用LVS(linux虚拟服务器). LVS的特点是高性能和极复杂的配置.对网络环境的要求比较高.最近苦于LVS的配置测试,网上的文档和社区都比较少,按照各种教程配置,TCP报文均无法连通,再往下深究就要去研究公司虚机的网络结构了... 在寻找LVS配置调试方法时,看到一篇最近的文章讲4月28日刚刚发布的nginx1.90,添加了支持TCP协议的负载均衡的,如果只是需要做T…
ZeroMQ 官方地址 :http://api.zeromq.org/4-1:zmq-tcp zmq_tcp(7)          ØMQ Manual - ØMQ/4.1.0 Name zmq_tcp – 使用TCP协议的ØMQ网络单播协议 Synopsis TCP是一个应用广泛.可靠.单播的传输协议.当在一个网络中使用ZMQ进行分布式的应用连接时,应该优先使用TCP传输协议. Addressing 一个ØMQ网络节点是一个字符串,格式为transport://然后紧跟着一个address.…
很多应用层协议都有HeartBeat机制,通常是客户端每隔一小段时间向服务器发送一个数据包,通知服务器自己仍然在线,并传输一些可能必要的数据.使用心跳包的典型协议是IM,比如QQ/MSN/飞信等协议. 学过TCP/IP的同学应该都知道,传输层的两个主要协议是UDP和TCP,其中UDP是无连接的.面向packet的,而TCP协议是有连接.面向流的协议. 所以非常容易理解,使用UDP协议的客户端(例如早期的“OICQ”,听说OICQ.com这两天被抢注了来着,好古老的回忆)需要定时向服务器发送心跳包…