模型融合——stacking原理与实现】的更多相关文章

一般提升模型效果从两个大的方面入手 数据层面:数据增强.特征工程等 模型层面:调参,模型融合 模型融合:通过融合多个不同的模型,可能提升机器学习的性能.这一方法在各种机器学习比赛中广泛应用, 也是在比赛的攻坚时刻冲刺Top的关键.而融合模型往往又可以从模型结果,模型自身,样本集等不同的角度进行融合. 模型融合是后期一个重要的环节,大体来说有如下的类型方式: 加权融合(投票.平均) 硬投票 软投票 boosting/bagging(集成学习) stacking/blending 本文主要介绍sta…
当你的深度学习模型变得很多时,选一个确定的模型也是一个头痛的问题.或者你可以把他们都用起来,就进行模型融合.我主要使用stacking和blend方法.先把代码贴出来,大家可以看一下. import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import roc_curve SEED = 222 np.random.seed(SEED) from sklearn.mod…
转载:https://github.com/LearningFromBest/CMB-credit-card-department-prediction-of-purchasing-behavior-in-consumer-finance-scenario/blob/master/stacking.py from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.mode…
话不多说,直接上代码 def stacking_first(train, train_y, test): savepath = './stack_op{}_dt{}_tfidf{}/'.format(args.option, args.data_type, args.tfidf) os.makedirs(savepath, exist_ok=True) count_kflod = 0 num_folds = 6 kf = KFold(n_splits=num_folds, shuffle=Tru…
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好.今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理.并在博文的后面附有相关代码实现. 总体来说,stacking集成算法主要是一种基于"标签"的学习,有以下的特点: 用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习 优点:可以结合不同的模型 缺点:增加了时间开销,容易造成过拟合 关键点:模型如何进行交叉训练? 下面我们来看看stacking的具体…
前言 前面的文章中介绍了决策树以及其它一些算法,但是,会发现,有时候使用使用这些算法并不能达到特别好的效果.于是乎就有了集成学习(Ensemble Learning),通过构建多个学习器一起结合来完成具体的学习任务.这篇文章将介绍集成学习,以及其中的一种算法 AdaBoost. 集成学习 首先先来介绍下什么是集成学习: 构建多个学习器一起结合来完成具体的学习任务,常可获得比单一学习器显著优越的泛化性能,对"弱学习器" 尤为明显(三个臭皮匠,顶个诸葛亮) 也称为Multi-Classif…
一个优秀Java程序员,必须了解Java内存模型.GC工作原理,以及如何优化GC的性能.与GC进行有限的交互,有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只有全面提升内存的管理效率,才能提高整个应用程序的性能. 本文将从JVM内存模型.GC工作原理,以及GC的几个关键问题进行探讨,从GC角度提高Java程序的性能. 一.Java内存模型 按照官方的说法:Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配. JVM主要管理两种类型内存:堆和非堆,堆内存…
模型融合 有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同.无论是出于要通过ensemble提升性能的目的,还是要设计特殊作用的网络,在用Caffe做工程时,融合都是一个常见的步骤. 比如考虑下面的场景,我们有两个模型,都是基于resnet-101,分别在两拨数据上训练出来的.我们希望把这两个模型的倒数第二层拿出来,接一个fc层然后训练这个fc层进行融合.那么有两个问题需要解决:1)两个模型中的层的名字都是相同的…
这是在kaggle上的一个练习比赛,使用的是ImageNet数据集的子集. 注意,mxnet版本要高于0.12.1b2017112. 下载数据集. train.zip test.zip labels 然后解压在data文件夹下 1. 数据 1.1 整理数据 将解压后的数据整理成Gluon能够读取的形式,这里我直接使用了zh.gluon.ai教程上的代码 导入各种库 import math import os import shutil from collections import Counte…
Java 内存模型.GC原理:https://blog.csdn.net/ithomer/article/details/6252552 GC算法:https://www.cnblogs.com/smyhvae/p/4744233.html…