谱聚类Ng算法的Matlab简单实现】的更多相关文章

请编写一个谱聚类算法,实现"Normalized Spectral Clustering-Algorithm 3 (Ng 算法)" 结果如下 谱聚类算法核心步骤都是相同的: •利用点对之间的相似性,构建亲和度矩阵: •构建拉普拉斯矩阵: •求解拉普拉斯矩阵最小的特征值对应的特征向量(通常舍弃零特征所对应的分量全相等的特征向量): •由这些特征向量构成样本点的新特征,采用K-means等聚类方法完成最后的聚类. 采用K-means等聚类方法完成最后的聚类  意思是,对特征向量构成的矩阵T…
了凡春秋USTC 谱聚类 http://chunqiu.blog.ustc.edu.cn/?p=505 最近忙着写文章,好久不写博客了.最近看到一个聚类方法--谱聚类,号称现代聚类方法,看到它简洁的公式推导.实现代码,不禁要尝试一把.关于它的理论,google一搜有很多博客讲,这里就不赘述了,反正最后还是归结为一个SVD分解问题,参考网址如下 http://www.cnblogs.com/phinecos/archive/2009/05/11/1453853.html http://blog.p…
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂.在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一.下面我们就对谱聚类的算法原理做一个总结. 1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用.它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来.距离较远的两个点之间的边权重值较…
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂.在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一.下面我们就对谱聚类的算法原理做一个总结. 1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用.它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来.距离较远的两个点之间的边权重值较…
谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相邻面片之间的差异性,然后计算相似矩阵的前k个特征向量,这些特征向量将网格面片映射到k维谱空间的单位球上,最后使用K-means方法对谱空间中的数据点进行聚类.具体算法过程如下: 一.相似矩阵 网格分割以面片为基本单元,为了能使算法沿着几何模型的凹形区域进行分割,网格相邻面片之间的距离采用[Katz…
谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用.本文将讲述进一步扩展其应用场景:首先是User-Item协同聚类,即spectral coclustering,之后再详述谱聚类的进一步优化. 1 Spectral Coclustering 1.1 协同聚类(Coclustering) 在数据分析中,聚类是最常见的一种方法,对于一般的聚类算法(kmeans, spectral clusterin…
    谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法--将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的.其中的最优是指最优目标函数不同,可以是割边最小分割--如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割--如图1的Best cut(如后文的Normalized cut). 图1 谱聚类无向图划分--Smallest cut和Best cut…
canopy聚类算法的MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. canopy聚类算法简介 Canopy聚类算法是一个将对象分组到类的简单.快速.精确地方法.每个对象用多维特征空间里的一个点来表示.这个算法使用一个快速近似距离度量和两个距离阈值T1>T2来处理.基本的算法是,从一个点集合开始并且随机删除一个,创建一个包含这个点的Canopy,并在剩余的点集合上迭代.对于每个点,如果它的距离第一个点的距离小于T1,然后这个点就加…
mean shift聚类算法的MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. mean shift 简介 mean shift, 写的更符合国人的习惯,应该是mean of shift,也就是平均偏移量,或者偏移均值向量.在明确了含义之后,就可以开始如下的具体讲解了. <img src="https://pic1.zhimg.com/50/v2-b5f01fcdfc7b8503…
目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图(sub-Graph),使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的. 对于图的相关定义如下: 对于无向图G = (V,E),V表示顶点集合,即样本集合,即一个顶点为一个样本:E表示边集合. 设样本数为n,即顶点数为n. 权重矩阵:W,为n*n的矩阵,其值wi,j为各边的权值…