1.cv2.cornerHarris(gray, 2, 3, 0.04)  # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子的大小,0.04表示角点响应R值的α值 角点检测:主要是检测一些边角突出来的点,对于A和B这样的面上的点而言,一个卷积框在上面移动,框中的基本像素点不发生变化, 对于像C和D边界点,只有x或者y轴方向上的平移,像素框内的像素会发生偏移,而对于E和F这样的角点而言,不管是像x轴或者向y轴平移,像素框内…
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute…
1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 参数说明: img表示需要补零的图片, top_size, bottom_size, left_size, right_size表示需要补零的尺寸, cv2.BORDER_REPLICATE表示补零的方式,这个是复制 2. 补零的方式说明 cv2.BORDER_REPLICATE: 进行复制的补零操作, 只对边缘…
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, transform_axes表示变换后四个角的位置 2.cv2.warpPerspective(gray, H, (width, height)) 根据H获得变化后的图像 参数说明: gray表示输入的灰度图像, H表示变化矩阵,(width, height)表示变换后的图像大小3. cv2.approx…
1.cv2.add(dog_img, cat_img)  # 进行图片的加和 参数说明: cv2.add将两个图片进行加和,大于255的使用255计数 2.cv2.resize(img, (500, 414))  # 根绝给定的维度进行变化   cv2.resize(img, (0, 0), fx=3, fy=1)  使得图像x轴变化为原来的三倍,y轴不变 参数说明:img表示需要变化的图片, (500, 414)表示变化的维度,长为414, 宽为500, fx=3, fy=1, 表示对图像的x…
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 2. cv2.findContours(img,mode, method)  # 找出图中的轮廓值,得到的轮廓值都是嵌套格式的 参数说明:img表示输入的图片,mode表示轮廓检索模式,通常都使用RETR_TREE找出所有的轮廓值,method表示轮廓逼近方法,使用NONE表示所有轮廓都显示 3.…
1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配度指标 2. min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(ret)  # 找出矩阵中最大值和最小值,即其对应的(x, y)的位置参数说明:min_val, max_val, min_loc, max_loc 分别表示最小值,最大值,即对应的位…
1.cv2.pyrDown(src)  对图片做向下采样操作,通常也可以做模糊化处理 参数说明:src表示输入的图片 2.cv2.pyrUp(src) 对图片做向上采样操作 参数说明:src表示输入的图片 高斯金字塔:分为两种情况:一种是向下采样,一种是向上采样 下采样的原理:先与Gi进行高斯卷积即高斯滤波,再将所有偶数行和列去除,实现行和列维度缩减的目的 代码: 第一步:读入图片 第二步:使用cv2.pyrDown进行高斯金字塔的下采样 第三步:使用自己的步骤做高斯金字塔的下采样,先对图像作高…
1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(frame, (w, h), cv2.INTER_AEAR)  # 进行图像大小的重新变化参数说明:frame表示输入图片,(w, h) 表示变化后的长和宽, cv2.INTER_AEAR表示插值的方法 4.cv2.selectROI(‘Frame’, frame, fromCenter=False,s…
1. cv2.equalizeHist(img)  # 表示进行直方图均衡化 参数说明:img表示输入的图片 2.cv2.createCLAHA(clipLimit=8.0, titleGridSize=(8, 8))  用于生成自适应均衡化图像 参数说明:clipLimit颜色对比度的阈值, titleGridSize进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作 直方图均衡化:一般可以用来提升图片的亮度, 在上面一节中,我们可以看出在150-200之间所占的频数特别的大,频数…
1.op = cv2.TOPHAT  礼帽:原始图片-开运算后的图片 2. op=cv2.BLACKHAT 黑帽: 闭运算后的图片-原始图片 礼帽:表示的是原始图像-开运算(先腐蚀再膨胀)以后的图像 黑帽:表示的是闭运算(先膨胀再腐蚀)后的图像 - 原始图像 代码: 第一步:读取图片 第二步:使用cv2.MOPRH_TOPHAT获得礼帽图片 第三步:使用cv2.MOPRH_BLACKHAT获得黑帽图片 import cv2 import numpy as np # 第一步读入当前图片 img =…
1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐蚀和膨胀操作 第三步:将膨胀的图像 - 腐蚀的图像,获得相减得图像 第四步:使用cv2.morphologyEx(src, cv2.GRADIENT, kernel) 获得梯度运算的图片的操作 第五步:绘制第三步和第四步生成的图片 import cv2 import numpy as np # 第一…
1.cv2.dilate(src, kernel, iteration) 参数说明: src表示输入的图片, kernel表示方框的大小, iteration表示迭代的次数 膨胀操作原理:存在一个kernel,在图像上进行从左到右,从上到下的平移,如果方框中存在白色,那么这个方框内所有的颜色都是白色 代码: 1.读取带有毛躁的图片 2.使用cv2.erode进行腐蚀操作 3.使用cv2.dilate进行膨胀操作 import cv2 import numpy as np # 1.读入图片 img…
1.cv2.erode(src, kernel, iteration) 参数说明:src表示的是输入图片,kernel表示的是方框的大小,iteration表示迭代的次数 腐蚀操作原理:存在一个kernel,比如(3, 3),在图像中不断的平移,在这个9方框中,哪一种颜色所占的比重大,9个方格中将都是这种颜色 代码: 1.读取带有毛刺的图片 2.使用cv2.erode进行腐蚀操作,比较不同的kernel对结果的影响 3.读取圆的图片 4.使用cv2.erode进行腐蚀操作,比较不同的迭代次数对结…
1. cv2.imread('cat.jpg', cv2.IMGREAD_GRAYSCALE)  # 使用imread读入图像(BGR顺序), 使用IMGREAD_GRAYSCALE 使得读入的图片为灰度图, 2. cv2.imshow('cat', img)  # imshow表示展示图片,第一个参数表示图片的名字, 第二个参数表示需要显示的图片 3. cv2.waitKey(0)  #表示图片停留的时间, 0表示按任意键退出 4.cv2.destroyAllWindows()  #表示清除所…
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_64F允许结果是负值, dx表示x轴方向算子,dy表示y轴方向算子 2.cv2.laplacian(src, ddepth) 使用拉普拉斯算子进行计算 参数说明: src表示输入的图片,ddepth表示图片的深度,这里使用cv2.CV_64F允许结果是负值 scharr算子, 从图中我们可以看出sch…
1.cv2.Sobel(src, ddepth, dx, dy, ksize)  进行sobel算子计算 参数说明:src表示当前图片,ddepth表示图片深度,这里使用cv2.CV_64F使得结果可以是负值, dx表示x轴方向,dy表示y轴方向, ksize表示移动方框的大小 2.cv2.convertScalerAbs(src)  将像素点进行绝对值计算 参数说明: src表示当前图片 sobel算子:分为x轴方向和y轴方向上的,x轴方向上的算子如图中的Gx,将sober算子在图中进行平移,…
1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MORPH_OPEN 进行开运算,指的是先进行腐蚀操作,再进行膨胀操作 3. op = cv2.MORPH_CLOSE 进行闭运算, 指的是先进行膨胀操作,再进行腐蚀操作 开运算:表示的是先进行腐蚀,再进行膨胀操作 闭运算:表示先进行膨胀操作,再进行腐蚀操作 代码: 第一步:使用cv2.imread载入…
1.vc = cv2.VideoCapture('test.mp4') #进行视频的载入 2.vc.isOpened() # 判断载入的视频是否可以打开 3.ret, frame = vc.read()  #进行单张图片的读取,ret的值为True或者Flase, frame表示读入的图片 4.cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  #表示将图片转换为灰度图 代码: import cv2 vc = cv2.VideoCapture('test.mp4')…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 特征点检测广泛应用到目标匹配,目标跟踪,三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色,角点,特征点,轮廓,纹理等特征.而下面学习常用的特征点检测. 总结一下提取特征点的作用: 1,运动目标跟踪 2,物体识别 3,图像配准 4,全景图像拼接 5,三维重建 而一种重要的点…
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2)  # 对两个图像关键点进行连线操作 参数说明:imageA和imageB表示图片,kpsA和kpsB表示关键点, matches表示进过cv2.BFMatcher获得的匹配的索引值,也有距离, flags表示有几个图像 书籍的SIFT特征点连接: 第一步:使用sift.detectAndComputer找出关键点和sift特征向量 第二步:构建BF…
参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014.html 不废话进入主题: 角点是一类具有特定特征的点,角点也是处在一个无论框框往哪边移动 框框内像素值都会变化很大的情况而定下来的点 可以这么去理解.... 如上图有三个颜色的框框,如果我们对蓝色框框进行移动,无论是水平 还是垂直的方向移动 都不会对框框内像素造成很大的变化...这种是内部区域 如…
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ORB BRISK KAZE AKAZE MESR GFTT good feature to tack Bob斑点 STAR AGAST 接下来分别讲述这是一种图像特征检测算法,但是首先,需要了解OPENCV的一种数据结构, KeyPoint结构,该结构的头文件定义如下: class KeyPoi…
图像特征描述 什么是图像特征 可以表达图像中对象的主要信息.并且以此为依据可以从其它未知图像中检测出相似或者相同对象 常见的图像特征 常见的图像特征  边缘  角点  纹理 图像特征描述  描述子生成 提取方法 特征提取与描述  SIFT  SURF  HOG  Haar  LBP  KAZE  AKAZE  BRISK DDM  Detection  Description  Matching…
1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predictor(args['shape_predictor'])  # 获得人脸关键点检测器, predictor(gray, rect) gray表示输入图片,rect表示人脸框的位置信息 参数说明: args['shape_predoctor]  人脸检测器的权重参数地址 3.cv2.convexHull…
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点——深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文…
第三讲_图像特征与描述Image Feature Descriptor 概要 特征提取方法 直方图 对图片数据/特征分布的一种统计:对不同量进行直方图统计:可以表示灰度,颜色,梯度,边缘,形状,纹理,局部特征等 灰度直方图:对量化的bin需要人工选择:量化过宽过窄都不好 聚类 混合样本集中内在群组关系 常用方法:Kmeans,EM算法,Mean Shift;谱聚类,层次聚类等 贪心算法,经常陷入局部最优解(非全局最优) K值和初始中心点选择 颜色特征 量化颜色直方图:适用于RGB,HSV等均匀空…
SAR是主动式侧视雷达系统,且成像几何属于斜距投影类型.因此SAR图像与光学图像在成像机理.几何特征.辐射特征等方面都有较大的区别.在进行SAR图像处理和应用前,需要了解SAR图像的基本特征. 本文主要包括: 成像散射特征 SAR几何特征 SAR图像特征   1.成像散射特征 SAR图像上的信息是地物目标对雷达波束的反映,主要是地物目标的后向散射形成的图像信息.反映SAR图像信息的灰度值主要受后向散射的影响,而影响后向散射的主要因素分为两大类: 雷达系统的工作参数:主要包括雷达传感器的工作波长.…
1.HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主要…
要进一步改进MNIST学习算法,需要对卷积神经网络进行学习和了解 学习材料参见https://www.cnblogs.com/skyfsm/p/6790245.html 卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统网络的一个改进,多了许多神经网络没有的层次. • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer • 池化层 / Pooling layer • 全连接层 / FC layer 1.数据…