效果展示 这不是OCR,有些人可能会觉得这东西会和OCR一样,直接进行整个字的识别就行,然而并不是. OCR是2维像素矩阵的像素数据.而手写识别不一样,手写可以把用户写字的笔画时间顺序,抽象成一个维度.这样识别的就是3维的数据了.识别起来简单很多. 最近需要做一个中文手写识别算法.搜索了网上的一些前人作品,发现都是只讲了理论,不讲实际开发.于是打算自己开发一个,并记录开发过程. 由于代码量比较多,这里不会全部贴上来讲解,代码已经放到了gitee,部分地方需对照代码进行观看,下面有URL. 思路…
基于BP神经网络的字符识别研究 原文作者:Andrew Kirillov. http://www.codeproject.com/KB/cs/neural_network_ocr.aspx 摘要:本文通过对人工智能课程中BP神经网络的学习,基于一个神经网络的开源项目,开发实现了一个简易的字符识别系统,并给出了较为理想的实验效果.该系统可以在手写体,印刷体字符识别上有广泛的应用. 关键词:BP神经网络; 字符识别:开源:AForge.NET 0 引言 在处理光学字符识别(OCR)问题上有很多种方法…
本文均属自己阅读源代码的点滴总结.转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email:gzzaigcn2009@163.com 写在前面的闲话: 自我感觉自己应该不是一个非常擅长学习算法的人.过去的一个月时间里由于须要去接触了BP神经网络.在此之前一直都觉得算法界的神经网络.蚁群算法.鲁棒控制什么的都是特别高大上的东西,自己也就听听好了,未曾去触碰与了解过.这次和BP神经网络的邂逅.让我初步掌握到.理解透彻算法的基本原理与公式,转为计算机所能识别的代码流,这应该就是所谓…
Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介绍了如何搭建Tensorflow的运行环境后(包括CPU和GPU的),今天就从MNIST手写识别的源码上分析一下,tensorflow的工作原理,重点是介绍CNN的一些基本理论,作为扫盲入门,也作为自己的handbook吧. Architecture 首先,简单的说下,tensorflow的基本架构…
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在TensorFlow的中文介绍文档中的内容,有些可能与你使用的tensorflow的版本不一致了,我这里用到的tensorflow的版本就有这个问题. 另外,还给大家说下,例子中的MNIST所用到的资源图片,在原始的官网上,估计很多人都下载不到了.我也提供一下下载地址. 我的tensorflow的版…
densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflow.contrib.slim as slim import time import logging import numpy as np import pickle from PIL import Image import tensorflow as tf #from tflearn.layers.…
一 . tesseract 4.0 安装及使用 1. tesseract 4.0 安装 安装包下载地址: http://digi.bib.uni-mannheim.de/tesseract/tesseract-ocr-setup-4.00.00dev.exe 我在CSDN下载资源里也上传了一份: http://download.csdn.net/download/dcrmg/10021168 exe可执行文件直接安装,选择安装路径: 安装完成之后需要添加2个环境变量: 1. 把安装路径"C:\P…
语言:c++ 环境:windows 训练内容:根据从steam中爬取的数据经过文本分析制作的向量以及标签 使用相关:无 解释: 就是一个BP神经网络,借鉴参考了一些博客的解释和代码,具体哪些忘了,给出其中一个: http://blog.csdn.net/zhongkejingwang/article/details/44514073 代码: #include <iostream> #include <cstring> #include <cmath> #include…
1.知识点 """ 1.基础知识: 1.神经网络结构:1.输入层 2.隐含层 3.全连接层(类别个数=全连接层神经元个数)+softmax函数 4.输出层 2.逻辑回归:只能解决二分类问题 3.线性回归:只能用于预测 4.softmax:有多少类别,就会有多少个输出 5.信息熵:信息熵越大,不确定性越大,信息熵越小,则不确定小,属于的类别也更加清晰 6.softmax公式: Si = e^i / (e^1+....+e^j) ,用于计算概率值. 特点:所有类别概率值相加等于1…
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p…