opencv检测黑色轮廓(矩形)】的更多相关文章

千万注意opencv的轮廓检测和边缘检测是两码事 本文链接:https://blog.csdn.net/wsp_1138886114/article/details/82945328 1 获取轮廓 OpenCV2获取轮廓主要是用 cv2.findContours() import cv2 img = cv2.imread('wujiaoxing.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret,binary = cv2.threshol…
FindContours 在二值图像中寻找轮廓  int cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour,  int header_size=sizeof(CvContour), int mode=CV_RETR_LIST,  int method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0,0) ); image  输入的 8-比特.单通道…
原文链接:https://blog.csdn.net/liqiancao/article/details/55670749 介绍 硕士阶段的毕设是关于昆虫图像分类的,代码写到一半,上周五导师又给我新的昆虫图片数据集了,新图片中很多图片很大,但是图片中的昆虫却很小,所以我就想着先处理一下图片,把图片中的昆虫裁剪下来,这样除去大部分无关背景,应该可以提高识别率. 原图片举例(将红色矩形框部分裁剪出来)):  step1:加载图片,转成灰度图 image = cv2.imread("353.jpg&q…
准备1:OpenCV常用图片转换技巧 在进行计算机视觉模型训练前,我们经常会用到图像增强的技巧来获取更多的样本,但是有些深度学习框架中的方法对图像的变换方式可能并不满足我们的需求,所以掌握OpenCV中一些常用的图像处理技巧对我们还是有很多帮助的. 图像通道分离 我们知道每个图像是由RGB三个颜色通道构成,所以我们可以使用split函数对原图像的三个通道进行分离: B, G, R = cv2.split(img) 进行通道分离的后,我们就可以在每个通道上独立的进行数值变换,变换完成后再来组合来生…
文章目录 OpenCV-Python:IV OpenCV中的图像处理 21 OpenCV 中的轮廓 21.1 初识轮廓 21.1.1 什么是轮廓 21.1.2 怎样绘制轮廓 21.1.3 轮廓的近似方法 21.2 轮廓特征 21.2.1 矩 1.2.2 轮廓面积 21.2.3 轮廓周长 21.2.5 凸包 21.2.6 凸性检测 21.2.7 边界矩形 1.2.8 最小外接圆 21.2.9 椭圆拟合 21.2.10 直线拟合 21.3 轮廓的性质 21.3.2 Extent 21.3.3 Sol…
  用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进. 首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉. 假设我们要检测下图中的条形码: 图1:包含条形码的示例图片 现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编…
原文地址:http://python.jobbole.com/80448/ 假设我们要检测下图中的条形码: # load the image and convert it to grayscale 12 image = cv2.imread(args["image"]) 13 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 14 15 # compute the Scharr gradient magnitude representatio…
什么是轮廓 找轮廓.绘制轮廓等 1.什么是轮廓 轮廓可看做将连续的点(连着边界)连在一起的曲线,具有相同的颜色和灰度.轮廓在形态分析和物体的检测和识别中很有用. 为了更加准确,要使用二值化图像.在寻找轮廓之前,要进行阈值化处理或者Canny边界检测. 查找轮廓的函数会修改原始图像.如果に在找到轮廓后还想使用原始图像的话,应该把原始图像存储到其他变量中. 在OpenCV中,查找轮廓就像是在黑色背景中找白色物体,要记住要找的物体应该是白色而背景应该是黑色 让我们看看如何在一个二值图像中查找轮廓: c…
OpenCV中可以方便的在一副图像中检测到轮廓,并把这些轮廓画出来.主要用到两个函数:一个是findContours( img, contours0, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);另一个是drawContours( cnt_img, contours, idx, color, 1, 8, hierarchy ); int main( int argc, char**) { Mat img = Mat::zeros(w, w, CV_8UC…
//形态学腐蚀 cvErode(pDstImage,pDstImage,,); //形态学膨胀 cvDilate(pDstImage,pDstImage,,); //中值滤波 cvSmooth(pDstImage,pDstImage, CV_MEDIAN);//默认窗口大小为3*3 cvShowImage("vei",pDstImage); ) storage = cvCreateMemStorage(); contours = NULL; //找出轮廓保存到countours中 cv…