2023NOIP A层联测26 T2 competition】的更多相关文章

序言 最近公司在招.NET程序员,我发现好多来公司面试的.NET程序员居然都没有 ASP.NET MVC项目经验,其中包括一些工作4.5年了,甚至8年10年的,许多人给我的感觉是:工作了4.5年,Web开发依旧停留在拖控件的水平,最最基本的算法,递归.排序(我不要求快速排序,你会冒泡就行了)都不会,数据库方面,很基础的SQL都写不出,分组过滤也不会,更别提性能了,问下数据优化经验,除了回答加索引基本就没下文了.当然,一些过去N年都是做ASP.NET WebForm开发的,不熟悉MVC,那也没关系…
转载自: http://blog.sina.com.cn/s/blog_9f488855010198vn.html 正确与否未验证 python中得thread的一些机制和C/C++不同:在C/C++中,主线程结束后,其子线程会默认被主线程kill掉.而在python中,主线程结束后,会默认等待子线程结束后,主线程才退出. python对于thread的管理中有两个函数:join和setDaemon join:如在一个线程B中调用threada.join(),则threada结束后,线程B才会接…
如果有需要,可以直接联系博主,讨论学习 一.了解X-CART. 3 二.PHP环境搭建... 3 三.安装配置X-CART. 4 1.下载X-Cart并配置域名,映射地址... 4 2.配置X-Cart. 5 四.X-CART 框架... 11 1.从用户前台了解x-cart功能... 11 2.从后台管理了解x-cart功能... 13 Dashboard. 13 Orders. 13 Catalog. 13 Users. 14 Shipping and Taxes. 14 Tools. 14…
如何使用ajax实现无刷新改变页面内容(也就是ajax异步请求刷新页面),下面通过一个小demo说明一下,前端页面代码如下所示 1 <%@ Page Language="C#" AutoEventWireup="true" CodeFile="p_tg.aspx.cs" Inherits="p_tg" %> 2 3 <!DOCTYPE html> 4 5 <html> 6 <head&…
http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分. 所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化.otsu算法被认为是图像分割中阈值选取的最…
http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分. 所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化.otsu算法被认为是图像分割中阈值选取的最…
转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度…
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果.整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间…
之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了减少参数规模,加快训练速度,CNN应运而生.CNN就像辟邪剑谱一样,正常人练得很挫,一旦自宫后,就变得很厉害.CNN有几个重要的点:局部感知.参数共享.池化.  局部感知 局部感知野.一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱.因…
1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes on Convolutional Neural Networks,结果刚看到第2章教材对BP算法的回顾就犯难了,不同于之前我学习的对每一个权值分别进行更新的公式推导,通过向量化表示它只用了5个式子就完成了对连接权值更新公式的描述,因此我第一眼看过去对每个向量的内部结构根本不清楚.原因还估计是自己当初…