概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x). 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i=1,2,…,m.求近似曲线y= φ(x).并且使得近似曲线与y=f(x)的偏差最小.近似曲线在点pi处的偏差δi= φ(xi)-y,i=1,2,...,m. 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小       3.使偏差平方…
背景 由项目中需要根据一些已有数据学习出一个y=ax+b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a.b,解决该问题时,首先想到的是通过spark mllib去学习,可是结果并不理想:少量的文档,参数也很难调整.于是转变了解决问题的方式:采用了最小二乘法做多项式拟合. 最小二乘法多项式拟合描述下: (以下参考:https://blog.csdn.net/funnyrand/article/details/46742561) 假设给定的数据点和其对应的函数值…
多项式曲线拟合:org.apache.commons.math3.fitting.PolynomialCurveFitter类. 用法示例代码: // ... 创建并初始化输入数据: double[] x = new double[...]; double[] y = new double[...]; 将原始的x-y数据序列合成带权重的观察点数据序列: WeightedObservedPoints points = new WeightedObservedPoints(); // 将x-y数据元…
polyfit 多项式曲线拟合 全页折叠 语法 p = polyfit(x,y,n) [p,S] = polyfit(x,y,n) [p,S,mu] = polyfit(x,y,n)   说明 示例 p = polyfit(x,y,n) 返回阶数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中).p 中的系数按降幂排列,p 的长度为 n+1 p(x)=p1xn+p2xn−1+...+pnx+pn+1. [p,S] = polyfit(x,y,n) 还返回一个结…
Numpy实现多项式曲线拟合 这里可以对比matlab中的拟合方式看看matlab拟合函数的三种方法,和第一种方式很像 问题定义:对于一堆数据点(x, y),能否只根据这些数据,找出一个函数,使得函数画出来的曲线和原始数据曲线尽量匹配? 多项式拟合问题:任何可微连续的函数,都可以用一个N次多项式来估计,而比N次幂更高阶的部分为无穷小可以忽略不计 3次多项式即: 比如我们可以让sin(x) 约等于: 1. 构造原始数据 2. 使用Numpy拟合…
一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言:真是太糟糕了,本地的公式和图片粘上来全都喂汪了... We begin by introducing a simple regression problem, 用一个例子穿起这些零碎的知识点. 回顾最前面的Mathematical Notation: A superscript T denotes…
一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标.型号.序列号.生产日期.容量.参数和主从设置方法等.这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义. 硬盘主要由盘体.控制电路板和接口部件等组成,如图1-1所示.盘体是一个密封的腔体.硬盘的内部结构通常是指盘体的内部结构:控制电路板上主要有硬盘BIOS.硬盘缓存(即CACHE)和主控制芯片等单元,如图1-2所示:硬盘接口包括电源插座.数据接口和主.从跳线,如图1-3所示. 图1-1 硬盘的外观 图1-2 控制电路板 图1-…
http://blog.csdn.net/pipisorry/article/details/49804441 常见的曲线拟合方法 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小       3.使偏差平方和最小 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法. 皮皮blog 多项式拟合 多项式拟合公式 多项式阶数对数据拟合的影响 数据量较少,阶数过高,可能过拟合. 多项式拟合问题描述 假定给定一个训练数据集: 其中,是输入的观测值,是相应的输出y的…
http://blog.csdn.net/guduruyu/article/details/72866144 最小二乘法多项式曲线拟合,是常见的曲线拟合方法,有着广泛的应用,这里在借鉴最小二乘多项式曲线拟合原理与实现的原理的基础上,介绍如何在OpenCV来实现基于最小二乘的多项式曲线拟合.   概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x). 原理 给定数据点pi(xi,yi),其中i=1,2,…,m.求近似曲线y…
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式曲线拟合的基本理论,对多项式数据拟合原理进行了全方面的理论阐述,同时也阐述了曲线拟合的基本原理及多项式曲线拟合模型的建立.具体记录了多项式曲线拟合的具体步骤,在建立理论的基础上具体实现多项式曲线的MATLAB实现方法的研究,采用MATLAB R2016a的平台对测量的数据进行多项式数据拟合,介绍了M…
定义: 最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可 以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 最小二乘法原理:在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2... xm,ym):将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以…
曲线拟合(转载:http://blog.sina.com.cn/s/blog_8e1548b80101c9iu.html) 补:拟合多项式输出为str 1.poly2str([p],'x') 2. fn=sprintf('%.16f%s%.16f%s%.16f%s%.16f',p(1),'*x^3+',p(2),'*x^2+',p(3),'*x+',p(4)); vpa(fn,精度) 补2:字符串拼接 1.STR=sprintf('%d%s.....',对应类型的值,对应类型的值); 2.str…
曲线拟合 使用Matlab自带的polyfit函数,可以很方便地根据现有样本数据进行多项式曲线拟合,为了有直观感受,先上例程,如下所示: x = -:; % 样本数据x坐标 y = *x.^ + *x + + randn(size(x)); % 样本数据y坐标,添加随机噪声 p = polyfit(x, y, ); % 使用自带函数进行数据拟合,拟合的多项式维数n= yy = polyval(p, x); % 生成拟合数据 figure, plot(x, y, '.'); % 显示原始数据 xl…
转自原文 MATLAB曲线拟合 曲线拟合 实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6 7 8 9 10 T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线. 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息. 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数. 1.线性拟合函数:regress() 调用…
目录numpy常用函数学习点乘法线型预测线性拟合裁剪.压缩和累乘相关性多项式拟合提取符号数组杂项点乘法该方法为数学方法,但是在numpy使用的时候略坑.numpy的点乘为a.dot(b)或numpy.dot(a,b),要求a,b的原始数据结构为MxN .* NxL=MxL,不是显示数据,必须经过a.resize()或者a.shape=两种方法转换才能将原始数据改变结构.代码如下: >>> import numpy as np>>> a=np.array([[1,2,3,…
原文:Matlab随笔之插值与拟合(下) 1.二维插值之插值节点为网格节点 已知m x n个节点:(xi,yj,zij)(i=1…m,j=1…n),且xi,yi递增.求(x,y)处的插值z. Matlab可以直接调用interp2(x0,y0,z0,x,y,`method`) 其中 x0,y0 分别为 m 维和 n 维向量,表示节点, z0 为 n × m 维矩阵,表示节点值, x,y 为一维数组,表示插值点, x 与 y 应是方向不同的向量,即一个是行向量,另一个是列 向量, z 为矩阵,它的…
http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值,共n个x,且所有概率总和为1,则联合分布需要2^n-1个参数. 贝叶斯网表示 独立性质的应用会降低参数数目,表达更紧凑. [PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes:独立性质的利用] 皮皮blog 贝叶斯网络 贝叶斯网络(Bayesian network),又称信念网络(Beli…
本渣想回过头来整理一下MATLAB的一些基本的知识(很多东西比较琐碎,应该系统的梳理梳理),下文中没有提到的,自己用help查即可. 此文用来存个档,便于回顾. 由于matlab各版本部分语法存在差异,可能会出现bug,用help查帮助文档即可. 如果没有装Matlab,我这里有一篇建模软件的博客:https://www.cnblogs.com/fangxiaoqi/p/10563509.html 变量名:字母数字串(第一个字符必须英文字母 | 字符间无空格 | 最多19个字符): 用%注解:…
本系列是根据<pattern recognition and machine learning>一书写的,算是读书笔记?算是吧.因为是从自己角度出发,所以其实很大程度上自己看得懂,估计别人看不懂,还望见谅. 数学符号约定: 该书意在能够以最小的数学范围来解释整本书,不过在微积分.现代.概率论上还是不可避免的用到,为了方便概念的理解,所以本书在力求数学上的严谨的同时更多的是从不同的参考资料中将数学符号都能够统一起来.向量表示成小写黑体罗马字母例如,所有的变量默认是列向量,所以关于向量的转置才是行…
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉.重复多次. 假设我们40%的概率选到红盒子,60%的概率选到蓝盒子.并且当我们把取出的水果拿掉时,选择盒子中任何一个水果还是等可能的. 问题: 1.整个过程中,取得苹果的概率有多大? 2.假设已经去的了一个橘子的情况下,这个橘子来自蓝盒子的可能性有多大? (这里,推荐一篇好文:数学之美番外篇:平凡而…
一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们将用整个第二章来研究各种各样的概率分布以及它们的性质.然而,在这里介绍连续变量一种最重要的概率分布是很方便的.这种分布就是正态分布(normal distribution)或者高斯分布(Gaussian distribution).在其余章节中(事实上在整本书中),我们将会经常用到这种分布.…
自己收集别人网盘上存的资源,分享一下[点击文件名可得到下载地址]        Matlab 7.8 基础视频教程 实例1 数据传递和多窗口编程_avi.zip 205.11 MB   Matlab 7.8 基础视频教程 实例1 格式化文本读操作_avi.zip 89.73 MB   Matlab 7.8 基础视频教程 实例2 MATLAB与Excel交互_avi.zip 246.84 MB   Matlab 7.8 基础视频教程 实例2 格式化文本文件写操作_avi.zip 44.85 MB…
收藏吧,网上搜集的,费了老大劲了,推荐给有需要的人,^_^.   MATLAB课件2007北京交通大学.zip 4.87 MB   A Guide to MATLAB for Beginners and Experienced Users.pdf 7.47 MB   An Introduction To Programming And methods in Matlab.pdf 2.32 MB   Applied Econometrics using MATLAB.pdf 1.41 MB   A…
基本绘图: (1)  plot是标准的绘图库,调用函数plot(x,y)就可以创建一个带有绘图的图形窗口(其中y是x的函数).输入的参数为具有相同长度的数组(或列表):或者plot(y)是plot(range(len(y)),y)的简写. 例1:python实现使用200个采样点来绘制sin(x),并且每隔四个点的位置设置标记. import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=[…
转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典.也是deep learning的基石之一.还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书里的内容梳理一遍,也不为什么目的,记下来以后自己可以翻阅用. 5.2 Network Tr…
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 之前介绍了SVM的原理和SVM的软间隔,它们已经可以很好的解决有异常点的线性问题,但是如果本身是非线性的问题,目前来看SVM还是无法很好的解决的.所以本文介绍SVM的核函数技术,能够顺利的解决非线性的问题. 2. 多项式回归 在线性回…
PRML第一章读书小结     第一章用例子出发,较为简单的引入了概率论.模型.决策.损失.信息论的问题,作为机器学习从业者,读PRML除了巩固已有基础,还受到了很多新的启发,下面将我收到的启发总结如下. 1. 多项式曲线拟合问题 多项式拟合问题作为全书的第一个引例,通过此说明了很多关键的概念. 给定一个训练集,训练集由\(x\)的N次观测组成,记作\(\mathbf{x} \equiv\left(x_{1}, \cdots, x_{N}\right)^{T}\),对应了相应的观测值\(t\),…
试题 算法训练 非递归 问题描述 当x>1时,Hermite多项式的定义见第二版教材125页.用户输入x和n,试编写"非递归"函数,输出对应的Hermite多项式的值.其中x为float型,n为int型. 输入格式 x n 输出格式 对应多项式的值 样例输入 一个满足题目要求的输入范例. 例: 3.6 4 样例输出 与上面的样例输入对应的输出. 例: 2077.31 数据规模和约定 x>1 n为自然数 PS: 百度搜索那个Hermite多项式的原理 import java.…
来源:https://ww2.mathworks.cn/help/matlab/ref/polyfit.html?searchHighlight=polyfit&s_tid=doc_srchtitle#bue6sxq-1-n polyfit 多项式曲线拟合 全页折叠 语法 p = polyfit(x,y,n) [p,S] = polyfit(x,y,n) [p,S,mu] = polyfit(x,y,n)   说明 示例 p = polyfit(x,y,n) 返回次数为 n 的多项式 p(x)…
1.原理 在现实中经常遇到这样的问题,一个函数并不是以某个数学表达式的形式给出,而是以一些自变量与因变量的对应表给出,老师讲课的时候举的个例子是犯罪人的身高和留下的脚印长,可以测出一些人的数据然后得到一张表,它反应的是一个函数,回归的意思就是将它还原成数学表达式,这个式子也称为经验表达式,之所以叫经验就是说它不完全是实际中的那样准确,是有一定偏差的,只是偏差很小罢了. 最小二乘法     设经验 方程是y=F(x),方程中含有一些待定系数an,给出真实值{(xi,yi)|i=1,2,...n},…