tf.multiply()和tf.matmul()区别】的更多相关文章

tf.add().tf.subtract().tf.multiply().tf.div()函数介绍和示例 1. tf.add() 释义:加法操作 示例: x = tf.constant(2, dtype=tf.float32, name=None) y = tf.constant(3, dtype=tf.float32, name=None) z = tf.add(x, y) # 加法操作 X = tf.constant([[1, 2, 3], [4, 5, 6]], dtype=tf.floa…
1.tf.multiply()两个矩阵中对应元素各自相乘 格式: tf.multiply(x, y, name=None) 参数: x: 一个类型为:half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128的张量. y: 一个类型跟张量x相同的张量.  返回值: x * y element-wise.  注意: (1)multiply这个函数实现的是元素级别的相乘,也就是两个相乘…
(1)tf.multiply是点乘,即Returns x * y element-wise. (2)tf.matmul是矩阵乘法,即Multiplies matrix a by matrix b, producing a * b.…
tf.matmul(a,b,transpose_a=False,transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None) 参数: a 一个类型为 float16, float32, float64, int32, complex64, complex128 且张量秩 > 1 的张量 b  一个类型跟张量a相同的张量 transpose_a 如果为真,…
import tensorflow as tfimport numpy as np 1.tf.placeholder placeholder()函数是在神经网络构建graph的时候在模型中的占位,此时并没有把要输入的数据传入模型,它只会分配必要的内存. 等建立session,在会话中,运行模型的时候通过feed_dict()函数向占位符喂入数据. 2.tf.session 1.tf.multiply 点乘 input1 = tf.placeholder(tf.float32) input2 =…
1.tf.multiply()函数:矩阵对应元素相乘 官网定义: multiply(x,y,name=None) 参数: x: 一个类型为:half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128的张量. y: 一个类型跟张量x相同的张量. 注意: (1)该函数实现的是元素级别的相乘,也就是两个相乘的数元素各自相乘,而不是矩阵乘法 (2)两个相乘的数必须是相同的类型,否则会报错.…
在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要. ==因此,tensorflow中用tf.Variable(),tf.get_variable(),tf.Variable_scope(),tf.name_scope()几个…
1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`, `string`. y: A `Tensor`. Must have the same type as `x`.…
刷课过程中思考到Variable和Tensor之间的区别,尝试发现在如下代码中: a = tf.Variable(tf.ones(1)) b = tf.add(a,tf.ones(1)) 1 2 a是Variable,而b是Tensor.发现自己对Variable和Tensor之间的区分了解不多,所以搜索了一下,记录自己的思考,欢迎指教. Variable是可更改的(mutable),而Tensor是不可更改的.一个直接的例子就是Tensor不具有assign函数,而Variable含有. py…
官方tutorial是这么说的: The only difference with a regular Session is that an InteractiveSession installs itself as the default session on construction. The methods Tensor.eval() and Operation.run() will use that session to run ops. 翻译一下就是:tf.InteractiveSes…