storm集成kafka的应用,从kafka读取,写入kafka by 小闪电 0前言 storm的主要作用是进行流式的实时计算,对于一直产生的数据流处理是非常迅速的,然而大部分数据并不是均匀的数据流,而是时而多时而少.对于这种情况下进行批处理是不合适的,因此引入了kafka作为消息队列,与storm完美配合,这样可以实现稳定的流式计算.下面是一个简单的示例实现从kafka读取数据,并写入到kafka,以此来掌握storm与kafka之间的交互. 1程序框图 实质上就是storm的kafkasp…
我们知道storm的作用主要是进行流式计算,对于源源不断的均匀数据流流入处理是非常有效的,而现实生活中大部分场景并不是均匀的数据流,而是时而多时而少的数据流入,这种情况下显然用批量处理是不合适的,如果使用storm做实时计算的话可能因为数据拥堵而导致服务器挂掉,应对这种情况,使用kafka作为消息队列是非常合适的选择,kafka可以将不均匀的数据转换成均匀的消息流,从而和storm比较完善的结合,这样才可以实现稳定的流式计算,那么我们接下来开发一个简单的案例来实现storm和kafka的结合 s…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3974417.html 本文主要介绍如何在Storm编程实现与Kafka的集成 一.实现模型 数据流程: 1.Kafka Producter生成topic1主题的消息 2.Storm中有个Topology,包含了KafkaSpout.SenqueceBolt.KafkaBolt三个组件.其中KafkaSpout订阅了topic1主题消息,然后发送 给SenqueceBolt加工处理,最后数据由Kafka…
1.pom文件依赖 <!--storm相关jar --> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>${storm.version}</version> <!--排除相关依赖 --> <exclusions> <exclusion>…
首先是关于flume的基础介绍 组件名称 功能介绍 Agent代理 使用JVM 运行Flume.每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks. Client客户端 生产数据,运行在一个独立的线程. Source源 从Client收集数据,传递给Channel. Sink接收器 从Channel收集数据,进行相关操作,运行在一个独立线程. Channel通道 连接 sources 和 sinks ,这个有点像一个队列. Events事件 传输的基本数据负…
目录 SparkSQL读取Kudu,写出到Kafka 1. pom.xml 依赖 2.将KafkaProducer利用lazy val的方式进行包装, 创建KafkaSink 3.利用广播变量,将KafkaProducer广播到每一个executor SparkSQL读取Kudu,写出到Kafka 背景:通过spark SQL读kudu表,写入到kafka 参考:1.spark向kafka写入数据 2.通过Spark向Kafka写入数据 1. pom.xml 依赖 <dependencies>…
https://blog.csdn.net/a123demi/article/details/78234023  : Springboot集成mybatis(mysql),mail,mongodb,cassandra,scheduler,redis,kafka,shiro,websocket.…
转载自 huxihx,原文链接 Kafka与Flink集成 Apache Flink是新一代的分布式流式数据处理框架,它统一的处理引擎既可以处理批数据(batch data)也可以处理流式数据(streaming data).在实际场景中,Flink利用Apache Kafka作为上下游的输入输出十分常见,本文将给出一个可运行的实际例子来集成两者. 目录 一.目标 二.环境准备 三.创建Flink Streaming工程 四.增加kafka和kafka-connector依赖 五.启动Flink…
原文链接:spark读取 kafka nginx网站日志消息 并写入HDFS中 spark 版本为1.0 kafka 版本为0.8 首先来看看kafka的架构图 详细了解请参考官方 我这边有三台机器用于kafka 日志收集的 A 192.168.1.1 为server B 192.168.1.2 为producer C 192.168.1.3 为consumer 首先在A上的kafka安装目录下执行如下命令 ./kafka-server-start.sh ../config/server.pro…
一. 概述 在大数据的静态数据处理中,目前普遍采用的是用Spark+Hdfs(Hive/Hbase)的技术架构来对数据进行处理. 但有时候有其他的需求,需要从其他不同数据源不间断得采集数据,然后存储到Hdfs中进行处理.而追加(append)这种操作在Hdfs里面明显是比较麻烦的一件事.所幸有了Storm这么个流数据处理这样的东西问世,可以帮我们解决这些问题. 不过光有Storm还不够,我们还需要其他中间件来协助我们,让所有其他数据源都归于一个通道.这样就能实现不同数据源以及Hhdfs之间的解耦…