今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络. 话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补!基本是笔记+翻译,主要是自己写一下以后好翻阅. PRML第5章介绍了神经网络neu…
话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补! 第5章 Neural Networks 在第3章和第4章,我们已经学过线性的回归和分类模型,这些模型由固定的基函数(basis functions)的线性组合组成.这样的模型具有有用的解析和计算特性,但是因为维度灾难(the curse of dimensionali…
转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典.也是deep learning的基石之一.还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书里的内容梳理一遍,也不为什么目的,记下来以后自己可以翻阅用. 5.2 Network Tr…
[1] Answer:C [2] Answer:D 第二层要输出四个元素a1 a2 a3 a4.输入x有两个,加一个x0是三个.所以是4 * 3 [3] Answer:C [4] Answer:C [5] Answer:A  相当于x1==0&&x2==0 [6] Answer:C 10个类别,输出层有10个.10*(5+1)=60 测验 Answer:BC A 如果不属于三个类型,之和是0? D XOR操作需要三层 Answer:A Answer:A Answer:A Answer:A…
原文 http://blog.csdn.net/abcjennifer/article/details/7758797 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
Bishop的<模式识别和机器学习>是该领域的经典教材,本文搜罗了有关的教程和读书笔记,供对比学习之用,主要搜索的资源包括CSDN:http://download.csdn.net/search?q=PRML  ,Memect:http://ml.memect.com/search/?q=PRML .另外就是百度和谷歌了. 1:<Pattern Recognition and Machine Learning> 作者主页 .PRML作者Christopher M. Bishop发布…
久仰Bishop的大作“Pattern Recognition and Machine Learning”已久,在我的硬盘里已经驻扎一年有余,怎奈惧其页数浩瀚,始终未敢入手.近日看文献,屡屡引用之.不得不再翻出来准备细读一番.有条件的话也要写写读书笔记的,要不基本上也是边看边忘. 我在V盘分享了pdf: http://vdisk.weibo.com/s/oM0W7 Bishopde网页,这里可以下载PPT和程序: http://research.microsoft.com/en-us/um/pe…
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简单了解什么是集成学习? 集成学习(Ensemble Learning)是目前模式识别与机器学习中常用的一种学习算法,是使用一系列的学习器(分类器)通过某种规则(投票法.加权投票等)将各分类器的学习结果进行融合,达到比单学习器识别效果更好地目的. 可以打一个简单的比喻,如果我们将"学习器"看…
主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内容:1. 神经网络的定义2. 训练方法:error函数,梯度下降,后向传导3. 正则化:几种主要方法,重点讲卷积网络 书上提到的这些内容今天先不讲了,以后有时间再讲:BP在Jacobian和Hessian矩阵中求导的应用:混合密度网络:贝叶斯解释神经网络. 首先是神经网络的定义,先看一个最简单的神经…