数据预测算法-ARIMA预测】的更多相关文章

简介 ARIMA: AutoRegressive Integrated Moving Average ARIMA是两个算法的结合:AR和MA.其公式如下: 是白噪声,均值为0, C是常数. ARIMA的前半部分就是Autoregressive:, 后半部分是moving average:. AR实际上就是一个无限脉冲响应滤波器(infinite impulse resopnse), MA是一个有限脉冲响应(finite impulse resopnse),输入是白噪声. ARIMA里面的I指In…
基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans和随机森林算法对网络服务数据进行分析:数据分为全量数据和正常数据,每天通过自动跑定时job从全量数据中导入正常数据供算法做模型训练. 使用celery批量导入(指定时间段)正常样本到数据库 def add_normal_cat_data(data): """ 构建数据model…
原文:[年终分享]彩票数据预测算法(一):离散型马尔可夫链模型实现[附C#代码] 前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下.本文的目的是向大家分享一个经典的数学预测算法的思路以及代码.对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习. 1.马尔可夫链预测模型介绍[1] 马尔可夫链是一个能够用数学…
from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html 在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测. 时间序列数据一般有以下几种特点:1.趋势(Trend)  2. 季节性(Seasonality). 趋势描述的是时间序列的整体走势…
前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下.本文的目的是向大家分享一个经典的数学预测算法的思路以及代码.对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习. 1.马尔可夫链预测模型介绍 马尔可夫链是一个能够用数学方法就能解释自然变化的一般规律模型,它是由著名的俄国数学家马尔科夫在1910年左右提出的…
训练算法并对算法的准确值准确率进行估计 #导入相应模块 import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inline #将所有准备的样本加载到列表中 x = []for i in range(10):     for j in range(1,501):          x.append(plt.imread("./data/%d/%d_%d.bmp"%(i,i,j))) …
声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 学习方法         条件随机场模型实际上是定义在时序数据上的对数线性模型,其学习方法包括极大似然估…
试题 算法训练 预测身高 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述: 生理卫生老师在课堂上娓娓道来: 你能看见你未来的样子吗?显然不能.但你能预测自己成年后的身高,有公式: 男孩成人后身高=(父亲身高+母亲身高)/21.08 女孩成人后身高=(父亲身高0.923+母亲身高)/2 数学老师听见了,回头说:这是大样本统计拟合公式,准确性不错. 生物老师听见了,回头说:结果不是绝对的,影响身高的因素很多,比如营养.疾病.体育锻炼.睡眠.情绪.环境因素等. 老师们齐回头,看见同学…
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇文章的能给出的只是一个描述趋势的折线图,从图中我们能分析出的知识也只能通过语言描述,而这里面缺少更确切的数据支撑,作为一个凡事以数据说话的年代显然这是不够的,本篇我们将根据上一篇的预…
结构化数据的预处理 前面所展示的一些示例已经很让人兴奋.但从总体看,数据类型还是比较单一的,比如图片,比如文本. 这个单一并非指数据的类型单一,而是指数据组成的每一部分,在模型中对于结果预测的影响基本是一致的. 更通俗一点说,比如在手写数字识别的案例中,图片坐标(10,10)的点.(14,14)的点.(20,20)的点,对于最终的识别结果的影响,基本是同一个维度. 再比如在影评中,第10个单词.第20个单词.第30个单词,对于最终结果的影响,也在同一个维度. 是的,这里指的是数据在维度上的不同.…