首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
BZOJ 1013 & 高斯消元
】的更多相关文章
BZOJ 1013 & 高斯消元
题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看到,假设圆心O,根据他告诉我们的公式我们可以得到给出任意两个点和圆心的一个方程,这个方程有k个未知数,那么我们随意构造K个方程然后跑一跑高斯消元. 机械工业的线代还是挺清楚易懂的...每次枚举到一个主元行就把下面每一个都消了...恩...比较直观... 因为最后一个换行还PE了一发...有点醉= =…
BZOJ 3143 高斯消元+贪心....
思路: 先算一下每条边经过次数的期望 转化为每个点经过次数的期望 边的期望=端点的期望/度数 统计一下度数 然后高斯消元 贪心附边权--. //By SiriusRen #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define eps 1e-10 int n,m,d[250050];double a[505][…
BZOJ 3503 高斯消元
思路: 高斯消元就好啦 注意每个格子最多只能和4个相邻 所以是 n*m*n*m*5 的 并不会TLE //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int n,m,a[44][44],xx[]={0,0,1,-1,0},yy[]={1,-1,0,0,0},eli[1666][1666],b[1666],ans[1666]; int…
BZOJ 4004 高斯消元
思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cstdio> #include <algorithm> using namespace std; #define double long double const int N=505;const double eps=1e-8; int n,m,vis[N],ans2;double ans; s…
bzoj 2337 高斯消元+概率DP
题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均概率值 因为整个图是联通的那么所有点都默认会处于多元方程组中 Pi = p[i] * sigma( v&d[i][j]?(1-Pj):Pj) v是当前二进制位代表的数值 这里需要注意的是自环的加边情况,自环只加一次边,不能向平时那样加无向边一样 #include <cstdio> #inc…
BZOJ 2844 高斯消元 线性基
思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int inf=0x7fffffff,mod=10086; int n,a[100050],q,flag=1,rec[66],ans; void Gauss(){ for(int i=30,j;~i;i--){ for(j=flag;j<=n;j++)if(a…
BZOJ 4269 高斯消元求线性基
思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorithm> using namespace std; int n,flag=1,ans,a[100050]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&a[i]); f…
bzoj 2844: albus就是要第一个出场 高斯消元
LINK 题意:看题目不如看样例解释.给出有n个数的集合,对这些子集中的数求异或,升序统计所有子集得到的数(重复会被计入),询问一个数x,问这个数出现的第一个位置 思路:在这里要求一个所有可能出现的异或值,对于这个要求有个思想和概念很适用这类题——线性基.线代里面学过线性无关组,可用高斯消元解得,在本题中的线性基类似,是能够构造所有出现异或值得线性无关组.总的来说本质思维就是高斯消元. /** @Date : 2017-07-03 10:40:20 * @FileName: bzoj 2844…
[BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)
[BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点 后6位,且其绝对值都不超过20000. Output 有且只有一行,…
BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1013 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一…
bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3584 Solved: 1863[Submit][Status][Discuss] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接…
BZOJ 1013 球形空间产生器sphere 高斯消元
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. 思路: 每两个可以构成一个n个变量的式子,可以构造出n个不同的式子,进行高斯消元求解. 高斯消元模板: typedef double Matrix[maxn][maxn]…
【BZOJ 1013】球形空间产生器sphere(高斯消元)
球形空间产生器sphere HYSBZ - 1013 (高斯消元) 原题地址 题意 给出n维的球上的n个点,问原球体球心. 提示 n维球体上两点距离公式\(dist = \sqrt{ (a1-b1)^2 + (a2-b2)^2 + - + (an-bn)^2 }\) 解法 \((x1-x0)^2\) --1 \((x2-x0)^2\) --2 2-1得 \((x2-x0)^2-(x1-x0)^2=0\) --> \(2(x2-x1)x0=(x2-x1)^2\) 类似可得 \(2(x2-x1)x0…
【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题
最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) f…
【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到小数点后3位.数…
【BZOJ】1013 [JSOI2008]球形空间产生器sphere(高斯消元)
题目 传送门:QWQ 分析 高斯消元就是个大暴力.... 代码 #include <bits/stdc++.h> using namespace std; ; ; int n; double a[maxn][maxn], b[maxn][maxn] ,c[maxn]; double sqr(double a) {return a*a;} void Gauss() { int n; scanf("%d",&n); ;i<=n+;i++) ;j<=n;j++…
BZOJ 1013 | 一份写了一堆注释的高斯消元题解
题意 给出\(n\)维直角坐标系中\(n + 1\)个点的坐标,它们都在一个\(n\)维球面上,求球心坐标. 题解 设球面上某两个点坐标为\((a_1, a_2, ... a_n)\)和\((b_1, b_2, ... b_n)\),则可以列出方程: \[(x_1 - a_1)^2 + (x_2 - a_2)^2 + ... + (x_n - a_n)^2 = (x_1 - b_1)^2 + (x_2 - b_2)^2 + ... + (x_n - b_n)^2\] 括号打开化简得 \[2*(a…
bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】
n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3) 因为圆上各点到圆心的距离相同,于是可以列出距离方程 \[ (a1-x)^2+(b1-y)^2=(a2-x)^2+(b2-y)^2 \] \[ (a1-x)^2+(b1-y)^2=(a3-x)^2+(b3-y)^2 \] 然后化简 \[ -2(a2-a1)x-2(b2-b1)y=a1^2-a2^2+b1^2-b2^2 \] \[ -2(a3-a1)x-2(b3-b1)y=a…
BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)
BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该点的概率. 那么对于每一种状态a,b 则有P(a,b)=p[a]∗p[b]∗P(a,b)+Out[u]∗p[b]∗P(u,b)+p[a]∗Out[v]∗P(a,v)+Out[u]∗Out[v]∗P(u,v) 则有n^2个方程 对于起始状态a,b,则有P(a,b)=p[a]∗p[b]∗P(a,b)+O…
BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小.…
BZOJ.4820.[SDOI2017]硬币游戏(思路 高斯消元 哈希/AC自动机/KMP)
BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(60\)分啊但是第\(5.6\)个点WA了smg) 其实\(O((nm)^3)\)就是 [JSOI2009]有趣的游戏...只需建出AC自动机一遍高斯消元即可,比上面那个不知道好写到哪里去.. \(40\)分的做法问题在于状态(变量)太多.考虑把类似的状态合并成一个. 假设现在一共有两个串\(TTH\…
BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算
BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这一位是1的边,若一个端点是u.另一个是v,则x[u] += (1 - x[v]) / deg[u],反之亦然: 对于这一位是0的边,x[u] += x[v] / deg[u],反之亦然. 然后得到好多方程,高斯消元即可. #include <cstdio> #include <cmath&g…
BZOJ 球形空间产生器 解题报告(高斯消元)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确…
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上,后两次反面朝上. 选出n个同学,每个同学猜一个长度为m的序列,当某一个同学猜的序列在硬币序列中出现时(匹配时的序列必须连续),就不再扔硬币了,并且这个同学胜利.猜的n个序列两两不同. 假设硬币正反面朝上的概率相同,求每个同学胜利的概率. \(n \leq 300\) 分析 (注意,本题中不区分序列和…
BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i]) swap(a[i],a[j]); if (!a[i]) {k=i-1; break;} D(j,30,0) if (a[i]>>j & 1){ b[i]=j; F(x,1,n) if (x!=i && a[x]>>j&1) a[x]^=a[i];…
【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元
如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #include<cstring> #include<algorithm> using namespace std; const double eps=1e-9; bool vis[503]; double f[503],a[503][503],ans[500*500]; int N,M,cnt=…
【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Status][Discuss] Description 几乎是一路看题解过来了.. 拖了一个星期的题目- - 已然不会概率DP(说得好像什么时候会过一样),高斯消元(打一次copy一遍). 发现异或题目的新解决方法:按位处理.. 发现DP新方法:高斯消元. f[k][i]代表第k位权值起点为i到终点时答案…
BZOJ 2844 albus就是要第一个出场(高斯消元)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2844 题意: 给出一个长度为n的正整数数列A.每次选出A的一个子集进行抑或(空集抑或值为0),这样就得到一个长度为2^n的数列B.将B中元素升序排序.给出一个数字m,求m的B中出现的最小位置. 思路:首先将数字看做是二进制进行高斯消元,最后得到k个线性无关的数字,那么B中所有数字均可由这k个线性无关的数字得到,可以得到2^k个不同数字,每个数字在B中出现2^(n-k)次.因此,对于m,…
BZOJ 1923 外星千足虫(高斯消元)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1923 题意:有n个数字,m次测试.每个数字为0或者1.每次测试选出一些数字出来把他们加起来.现在告诉你每次测试选出的是哪些数字以及他们和的奇偶性.你需要给出到第几次测量为止就可以判断出所有n个数字的奇偶性,并输出每个数字的奇偶性.m次之后还不能判断输出无解. 思路:其实这就是一个高斯消元.但是n和m太大会超时.考虑到每次只是1和0的加加减减,可以用位运算进行. #include <io…
【高斯消元】BZOJ 1770: [Usaco2009 Nov]lights 燈
Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望.她希望您能夠幫幫她,把所有的燈都給重新開起來!她才能繼續快樂地跟她的閨密們繼續玩遊戲! 牛棚中一共有N(1 <= N <= 35)盞燈,編號為1到N.這些燈被置於一個非常複雜的網絡之中.有M(1 <= M <= 595)條很神奇的無向邊,每條邊連接兩盞燈. 每盞燈上面都帶有一個開關.當…