Loj 2005 相关分析】的更多相关文章

Loj 2005 相关分析 大力把式子拆开. \[ \begin{aligned} a &= \frac {\sum_{i=L}^{R} (x_i-\bar{x})(y_i-\bar{y})} {\sum_{i=L}^{R} (x_i-\bar{x})^2}\\ &= \frac {\sum_{i=L}^R (x_iy_i+\bar{x}\bar{y}-\bar{x}y_i-\bar{y}x_i)} {\sum_{i=L}^{R} (x_i^2-2\bar{x}x_i+\bar{x}^2)…
「SDOI2017」相关分析 题目链接:https://loj.ac/problem/2005 题解: 把上面的式子拆掉,把下面的式子拆掉. 发现所有的东西都能用线段树暴力维护. 代码: #include <bits/stdc++.h> #define N 100010 #define ls p << 1 #define rs p << 1 | 1 using namespace std; typedef double db; typedef double ll; ll…
题目描述 \(Frank\) 对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. \(Frank\) 不仅喜欢观测,还喜欢分析观测到的数据.他经常分析两个参数之间(比如亮度和半径)是否存在某种关系. 现在 \(Frank\) 要分析参数 \(X\) 与 \(Y\) 之间的关系.他有 \(n\) 组观测数据,第 \(i\) 组观测数据记录了 \(x_i\) 和 \(y_i\)​.他需要一下几种操作 \(1\ L,R:\) 用直线拟合…
Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中点有接口,所有水管的粗细都相同,所以如果两个相邻方格的公共边界的中点都有接头,那么可以看作这两个接头互相连接.水管有以下 \(15\) 种形状: 游戏开始时,棋盘中水管可能存在漏水的地方. 形式化地:如果存在某个接头,没有和其它接头…
Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少有一个棋子,也至少有一个空位. 游戏的目标是:在还没有放棋子的格子上依次放棋子,并填满整个棋盘.在某个格子上放置棋子必须满足以下条件之一: 这个格子的上下一格都放有棋子: 这个格子的左右一格都放有棋子. JOI 君想知道有多少种从初始状态开始,并达到游戏目标的方案,这个答案可能会非常大.请你帮 JO…
题目 https://loj.ac/problem/2005 思路 \[ \sum_{L}^{R}{(x_i-x)^{2}} \] \[ \sum_{L}^{R}{(x_i^2-2*x_i*x+x^{2})} \] \[ \sum_{L}^{R}{x_i^2}-2*x*\sum_{L}^{R}x_i+(r-l+1)x^{2} \] \[ \sum_{L}^{R}x_{i}^2-2*\frac{1}{r-l+1}(\sum_{L}^{R}x_i)^2+\frac{1}{r-l+1}*(\sum_{…
题解 感觉自己通过刷水题混LOJ刷题量非常成功 首先是二进制枚举位,判是否合法 要写两个solve不是很开心,\(A\)不为1的直接记录状态\(f[i][j]\)为能否到达前\(i\)个分成\(j\)段,转移\(n^3\) \(A\)为1的相当于在一张拓扑图上求到\(N\)的最短路是否小与\(B\),连边方式即为如果\(sum[j] - sum[k]\)是二分值的一个子集则\(k\)到\(j\)有边 代码 #include <bits/stdc++.h> #define fi first #d…
题目传送门:LOJ #2085. 两个月之前做的傻题,还是有必要补一下博客. 题意简述: 求分子为不超过 \(n\) 的正整数,分母为不超过 \(m\) 的正整数的所有互不相等的分数中,有多少在 \(k\) 进制下的纯循环小数. 题解: 设分子为 \(x\),分母为 \(y\). 首先,因为要求的是互不相等的分数,取最简分数,即 \(x\perp y\). 其次,要求是纯循环小数,考虑竖式除法的过程,可以发现 \(\displaystyle\frac{x}{y}\) 在 \(k\) 进制下纯循环…
LOJ#3090. 「BJOI2019」勘破神机 为了这题我去学习了一下BM算法.. 很容易发现这2的地方是\(F_{1} = 1,F_{2} = 2\)的斐波那契数列 3的地方是\(G_{1} = 3,G_{2} = 11\)其中下标表示长度的\(\frac{1}{2}\),可以得到\(G_{3} = 4G_{2} - G_{1}\) 然后我们列一波特征根方程,可以得到 \(m = 2\)时 $$ \left{\begin{matrix} x_{1} = \frac{1 + \sqrt{5}}…
LOJ#3089. 「BJOI2019」奥术神杖 看见乘积就取log,开根号就是除法,很容易发现这就是一道01分数规划.. 然后建出AC自动机直接dp就行,判断条件要设成>0,因为起点的值是1,取完ln后是0 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define…