delphi 图像处理 二值化】的更多相关文章

procedure TDR_QM_ZP_Form.Image_EZH( Bmp: TBitmap ); var p: PByteArray; Gray, x, y: Integer; begin //设置为24位真彩色 Bmp.PixelFormat := pf24Bit; randomize; for y := 0 to Bmp.Height - 1 do begin p := Bmp.scanline[y]; for x := 0 to Bmp.Width - 1 do begin //一个…
原文:Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化  [函数名称]   P分位法图像二值化 [算法说明]   所谓P分位法图像分割,就是在知道图像中目标所占的比率Ratio时,循环不同的灰度值对图像进行 分割,并计算对应的目标所占的比率,如果该比率与Ratio的差值足够小,那么该阈值就是所求的最 佳分割阈值. /// <summary> /// P-Parameter method of image segmention. /// </summary>…
原文:Win8 Metro(C#)数字图像处理--2.55OSTU法图像二值化  [函数名称] Ostu法图像二值化      WriteableBitmap OstuThSegment(WriteableBitmap src) [函数代码] /// <summary> /// Ostu method of image segmention. /// </summary> /// <param name="src">The source imag…
原文:Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化  [函数名称] 简单统计法图像二值化 WriteableBitmap StatisticalThSegment(WriteableBitmap src) /// <summary> /// Statistical method of image segmention. /// </summary> /// <param name="src">The source im…
原文:Win8 Metro(C#)数字图像处理--2.57一维最大熵法图像二值化  [函数名称] 一维最大熵法图像二值化WriteableBitmap EntropymaxThSegment(WriteableBitmap src) [算法说明] 一维最大熵法图像分割就是利用图像的灰度分布密度函数定义图像的信息熵,通过优化一定的熵 准则得到熵最大时对应的阈值,从而进行图像分割的方法. 算法过程: 1,对于一幅灰度图像,灰度范围为[0,L-1],求取图像的最小灰度级min,最大灰度级max:…
原文:Win8 Metro(C#)数字图像处理--2.58双峰法图像二值化  [函数名称]   双峰法图像二值化 WriteableBitmap  PeakshistogramThSegment(WriteableBitmap src) /// <summary> /// Peaks histogram method of image segmention. /// </summary> /// <param name="src">The sou…
原文:Win8 Metro(C#)数字图像处理--2.54迭代法图像二值化  [函数名称]   迭代法图像二值化      int IterativeThSegment(WriteableBitmap src) [函数代码] <strong> /// <summary> /// Iterative method of image segmention. /// </summary> /// <param name="src">The…
原文:Win8MetroC#数字图像处理--2.2图像二值化函数 [函数代码] /// <summary> /// Binary process. /// </summary> /// <param name="src">Source image.</param> /// <param name="threshould">Define a threshould value for binary proces…
为加快处理速度,在图像处理算法中,往往需要把彩色图像转换为灰度图像,在灰度图像上得到验证的算法,很容易移植到彩色图像上.24位彩色图像每个像素用3个字节表示,每个字节对应着R.G.B分量的亮度(红.绿.蓝).当R.G.B分量值不同时,表现为彩色图像;当R.G.B分量值相同时,表现为灰度图像,该值就是我们所求的一般来说,转换公式有3种.第一种转换公式为: Gray(i,j)=[R(i,j)+G(i,j)+B(i,j)]÷3 (2.1) 其中,Gray(i,j)为转换后的灰度图像在(i,j)点处的灰…
一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值,然后根据阈值将图像分为前景(白色) 或者背景(黑色).假设有6x6的灰度图像,其像素数据及其对应的直方 图如下图: 阈值寻找方法首先假设是为T=3,则背景像素的比重.均值.方差的计算 结果如下: 根据前景像素直方图,计算比重.均值.方差的过程如下: , 0, width, height, inPi…
简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gr…
重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程. 图像的预处理在进行图像二值化操作前要对图像进行预处理,包括彩色图像灰化和增强.由于选取阈值需要参照直方图,因此在图像进行处理后,我们再获取图像的直方图以帮助选取阈值.整个流程如下所示: 读取图像→灰度图像→图像增强→图像直方图→二值化处理 2.数学原理(转载,基本可…
前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多算法,傅里叶.积分,卷积,频谱,加权. ..,反正我看了半天,是云里雾里的.所以就想先就笼统的过一遍,以后遇到了再详细分析,比較这方面的基础没那么扎实. 先来记录下眼下学习到的一些知识. 首先是图像的灰度处理: CV_LOAD_IMAGE_GRAYSCALE,这是最简单之间的办法,在加载图像时直接处…
老代码备忘,我对图像处理不是太懂. 注:部分代码引援自网上,话说我到底自己写过什么代码... Private Declare Function GetBitmapBits Lib "gdi32" (ByVal hbitmap As Long, _ ByVal dwCount As Long, _ lpBits As Any) As Long Private Declare Function SetBitmapBits Lib "gdi32" (ByVal hbitm…
图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围.而灰度图像是R.G.B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些.灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征.图像的灰度…
前天闲着没事干,就写了写BMP图像处理,感觉大家还比较感兴趣..所以现在没事,继续更新..这次简单的写了灰度图像二值化..这是什么概念呢? 图像的二值化的基本原理 图像的二值化处理就是将图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果.即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像.在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要…
参考文档: Adaptive Thresholding for the DigitalDesk.pdf       Adaptive Thresholding Using the Integral Image.pdf 一.问题的由来 一个现实: 当用照像机拍摄一副黑纸白字的纸张时,照相机获得的图像并不是真正的黑白图像.不管从什么角度拍摄,这幅图像实际上是灰度或者彩色的.除非仔细的设置灯光,否则照相机所拍摄的放在桌子上的纸张图像并不能代表原始效果.不像在扫描仪或打印机内部,想控制好桌子表面的光源是…
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自<OpenCV_基于局部自适应阈值的图像二值化>) 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适…
一:什么是二值图像 彩色图像:三个通道0-,-,-,所以可以有2^24位空间 灰度图像:一个通道0-,所以有256种颜色 二值图像:只有两种颜色,黑和白,1白色,0黑色 二:图像二值化 (一)先获取阈值 (二)根据阈值去二值化图像 (三)OpenCV中的二值化方法 (四)补充阈值类型 原灰度图像的像素值 1.THRESH_BINARY:过门限的值为最大值,其他值为0 2.THRESH_BINARY_INV:过门限的值为0,其他值为最大值 3.THRESH_TRUNC:过门限的值为门限值,其他值不…
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自<OpenCV_基于局部自适应阈值的图像二值化>) 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适…
atitit.验证码识别step4--------图形二值化 灰度化 1. 常见二值化的方法原理总结 1 1.1. 方法一:该方法非常简单,对RGB彩色图像灰度化以后,扫描图像的每个像素值,值小于127的将像素值设为0(黑色),值大于等于127的像素值设为255(白色). 1 1.2. 方法二:最常见的二值处理方法是计算像素的平均值K, 2 1.3. 方法三:使用直方图方法来寻找二值化阈值, 2 1.4. 方法四:使用近似一维Means方法寻找二值化阈值,(推荐) 3 2. 使用类库imagei…
作者:马健邮箱:stronghorse_mj@hotmail.com 主页:http://www.comicer.com/stronghorse/ 发布:2017.07.23 教程十七:二值化图像去毛刺 在灰度图像处理成纯黑白(二值化)图像以后,经常出现的一个问题是轮廓边缘出现毛刺.如下面这个图像: 为了看得更清楚,放大到800%并加网格线: 可以看出在“工”字的上面一横中,上边缘有几个突出点,下边缘有两个凹陷点,而在“业”字左侧竖条中有突出点,下面一横中有凹陷点. 产生毛刺的原因是:在扫描或拍…
cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最佳阈值算法.该方法在类间方差最大的情况下是最佳的,就图像的灰度值而言,OTSU给出最好的类间分离的阈值. OpenCV阈值分割的几种方法(types_c.h中的定义): /* Threshold types */ enum { CV_THRESH_BINARY =0, /* value = valu…
#include "stdafx.h"//对一张图片进行二值化处理 IplImage *pSrclmg =NULL;//载入的图片IplImage *pDeclmg =NULL;//生成的图像 void onTrackerSlid(int thresth){ /*int i,j,k; //设置一个阈值,如果大于这个阈值就赋为255,小于这个阈值就赋为0 int height =pDeclmg->height; int width =pDeclmg->width; int s…
看网上方法很多,但版本都不够新,我看了网上一些知识,总结了下,来个最新版Xcode6.1的. 最近主要想做iOS端的车牌识别,所以开始了解OpenCV.有兴趣的可以跟我交流下哈. 一.Opencv的使用: 步骤: 1.从官网下载iOS版本的Opencv2.framework. 2.拖进工程,选择copy items if needed 3.进入building settings,设置Framework SearchPath: 设置成$(PROJECT_DIR)/Newtest,这个Newtest…
转载:http://www.chinasb.org/archives/2013/01/5053.shtml 1: package org.chinasb.client; 2: 3: import java.awt.Color; 4: import java.awt.image.BufferedImage; 5: import java.io.File; 6: import java.io.IOException; 7: 8: import javax.imageio.ImageIO; 9: 10…
图像的二值化: 与边缘检测相比,轮廓检测有时能更好的反映图像的内容.而要对图像进行轮廓检测,则必须要先对图像进行二值化,图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出明显的黑白效果.在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓. 下面就介绍OpenCV中对图像进行二值化的关键函数——cvThreshold(). 函数功能:采用Canny方法对图像进行边缘检测函数原型:void cvThreshold( …
函数功能:采用Canny方法对图像进行边缘检测 函数原型: void cvThreshold( const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type ); 函数说明: 第一个参数表示输入图像,必须为单通道灰度图. 第二个参数表示输出的边缘图像,为单通道黑白图. 第三个参数表示阈值 第四个参数表示最大值. 第五个参数表示运算方法. 在OpenCV的imgproc\types_c.h中…
/// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param> /// <returns></returns> private static unsafe Bitmap Binaryzation(Bitmap bmp) { BitmapData dstData = bmp.LockBits(, , bmp.Width, bmp.Height…
用CaptureFromCAM函数对图像进行提取: capture = cv.CaptureFromCAM(0) 读取直接的视频文件只需将语句改变为: capture = cv.VideoCapture('videoname.avi') 对每一帧图像进行读取: while True: img = cv.QueryFrame(capture) #如果按下 esc 键则终止程序退出 if cv.WaitKey(10) == 27: break 在循环中对读取的每一帧图像进行二值化处理: def bi…