原文链接:Spark+Kafka的Direct方式将偏移量发送到Zookeeper实现 Apache Spark 1.3.0引入了Direct API,利用Kafka的低层次API从Kafka集群中读取数据,并且在Spark Streaming系统里面维护偏移量相关的信息,并且通过这种方式去实现零数据丢失(zero data loss)相比使用基于Receiver的方法要高效.但是因为是Spark Streaming系统自己维护Kafka的读偏移量,而Spark Streaming系统并没有将这…
生产中,为了保证kafka的offset的安全性,并且防止丢失数据现象,会手动维护偏移量(offset) 版本:kafka:0.8 其中需要注意的点: 1:获取zookeeper记录的分区偏移量 2:获取broker中实际的最小和最大偏移量 3:将实际的偏移量和zookeeper记录的偏移量进行对比,如果zookeeper中记录的偏移量在实际的偏移量范围内则使用zookeeper中的偏移量 4:反之,使用实际的broker中的最小偏移量 KafkaHelper: import kafka.com…
参考上篇博文:https://www.cnblogs.com/niutao/p/10547718.html 同样的逻辑,不同的封装 package offsetInZookeeper /** * Created by angel */ import java.lang.Object import kafka.utils.{ZKGroupTopicDirs, ZkUtils} import org.apache.kafka.clients.consumer.{ConsumerRecord, Kaf…
版本声明: kafka:1.0.1 spark:2.1.0 注意:在使用过程中可能会出现servlet版本不兼容的问题,因此在导入maven的pom文件的时候,需要做适当的排除操作 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2…
在之前的文章<解析SparkStreaming和Kafka集成的两种方式>中已详细介绍SparkStreaming和Kafka集成主要有Receiver based Approach和Direct Approach.同时对比了二者的优劣势,以及针对不同的Spark.Kafka集成版本处理方式的支持: 本文主要介绍,SparkStreaming和Kafka使用Direct Approach方式处理任务时,如何自己管理offset? SparkStreaming通过Direct Approach接…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…
 说明:此程序使用的scala编写 在spark-stream+kafka使用的时候,有两种连接方式一种是Receiver连接方式,一种是Direct连接方式. 两种连接方式简介: Receiver接受固定时间间隔的数据(放在内存中),达到固定的时间才进行处理,效率极并且容易丢失数据.通过高阶API,不用管理偏移量,由zk管理,若是拉取的数据超过,executor内存大小,消息会存放到磁盘上面.0.10之后被舍弃. 弊端:效率极并且容易丢失数据 直连(Direct)方式:**********重点…
1.两种方式管理偏移量并将偏移量写入redis (1)第一种:rdd的形式 一般是使用这种直连的方式,但其缺点是没法调用一些更加高级的api,如窗口操作.如果想更加精确的控制偏移量,就使用这种方式 代码如下 KafkaStreamingWordCountManageOffsetRddApi package com._51doit.spark13 import com._51doit.utils.JedisConnectionPool import org.apache.kafka.clients…
本案例利用Spark+Kafka实时分析男女生每秒购物人数,利用Spark Streaming实时处理用户购物日志,然后利用websocket将数据实时推送给浏览器,最后浏览器将接收到的数据实时展现,案例的整体框架图如下: 下面分析详细分析下上述步骤: 应用程序将购物日志发送给Kafka,topic为”sex”,因为这里只是统计购物男女生人数,所以只需要发送购物日志中性别属性即可.这里采用模拟的方式发送购物日志,即读取购物日志数据,每间隔相同的时间发送给Kafka. 接着利用Spark Stre…
网上用python写spark+kafka的资料好少啊 自己记录一点踩到的坑~ spark+kafka介绍的官方网址:http://spark.apache.org/docs/latest/streaming-kafka-0-8-integration.html python的pyspark库函数文档:http://spark.apache.org/docs/latest/api/python/pyspark.streaming.html?highlight=kafkautils.created…