一种局部二值化算法:Sauvola算法】的更多相关文章

之前接触过全局二值化(OTSU算法),还有OPENCV提供的自适应二值化,最近又了解到一种新的局部二值化算法,Sauvola算法. 转载自:http://www.dididongdong.com/archives/4048 值得注意的是,计算r×r邻域内像素值的时候,一种优化的策略是,使用OPENCV提供的积分图,计算整张图像的积分图,那么计算r×r区域内的均值可以在常数时间内实现. CV_EXPORTS_W ); 我们常见的图像二值化算法大致可分为全局阈值方法与局部阈值方法这两种类型.其中OT…
转自http://blog.csdn.NET/ty101/article/details/8905394 本文的PDF版本,以及涉及到的所有文献和代码可以到下列地址下载: 1.PDF版本以及文献:http://download.csdn.net/detail/ty101/5349816 2.原作者的MATLAB代码:http://download.csdn.net/detail/ty101/5349894 LBP一种用来描述图像纹理特征的算子,该算子由芬兰奥卢大学的T.Ojala等人在1996年…
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 全局固定阈值很容易理解,就是对整幅图像都是用一个统一的阈值来进行二值化: 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来…
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自<OpenCV_基于局部自适应阈值的图像二值化>) 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适…
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自<OpenCV_基于局部自适应阈值的图像二值化>) 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适…
重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程. 图像的预处理在进行图像二值化操作前要对图像进行预处理,包括彩色图像灰化和增强.由于选取阈值需要参照直方图,因此在图像进行处理后,我们再获取图像的直方图以帮助选取阈值.整个流程如下所示: 读取图像→灰度图像→图像增强→图像直方图→二值化处理 2.数学原理(转载,基本可…
较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适应地变小.不同亮度.对比度.纹理的局部图像区域将会拥有相对应的局部二值化阈值.常用的局部自适应阈值有:1)局部邻域块的均值:2)局部邻域块的高斯加权和. /**…
sauvola二值化算法研究   sauvola是一种考虑局部均值亮度的图像二值化方法, 以局部均值为基准在根据标准差做些微调.算法实现上一般用积分图方法 来实现.这个方法能很好的解决全局阈值方法的短板-关照不均图像二值化不好的问题.先贴代码 //************************************ // 函数名称: sauvola // 函数说明: 局部均值二值化 // 参    数: //           const unsigned char * grayImage…
参考文档: Adaptive Thresholding for the DigitalDesk.pdf       Adaptive Thresholding Using the Integral Image.pdf 一.问题的由来 一个现实: 当用照像机拍摄一副黑纸白字的纸张时,照相机获得的图像并不是真正的黑白图像.不管从什么角度拍摄,这幅图像实际上是灰度或者彩色的.除非仔细的设置灯光,否则照相机所拍摄的放在桌子上的纸张图像并不能代表原始效果.不像在扫描仪或打印机内部,想控制好桌子表面的光源是…
主要讲解OTSU算法实现图像二值化:    1.统计灰度级图像中每个像素值的个数. 2.计算第一步个数占整个图像的比例. 3.计算每个阈值[0-255]条件下,背景和前景所包含像素值总个数和总概率(就是分别计算背景和前景下第一步和第二步的              和). 4.比较第三步前景和背景之间方差,找到最大的一个确定为选定的阈值. OTSU源码: 1 #include <opencv2/opencv.hpp> #include <iostream> #include <…