一.正则化的假设集合 通过从高次多项式的H退回到低次多项式的H来降低模型复杂度, 以降低过拟合的可能性, 如何退回? 通过加约束条件: 如果加了严格的约束条件, 没有必要从H10退回到H2, 直接使用H2就可以了. 加上松弛点的约束条件, 使得模型比H2复杂, 但到不了H10那么复杂. 二.权重衰减正则化 通过拉格朗日乘子法处理带约束的优化问题, 只看谷的话,需沿着梯度反方向下降到谷底; 只看超球面的话,需沿着垂直于法向量的方向滚; 判断当前W是否是最优解就看它能否在超球面上的同时还能向更接近谷…