[Pytorch框架] 1.7 数据并行】的更多相关文章

[源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之中的优化器 2.1 流程 2.2 使用 0x03 DDP 之中的优化器 3.1 流程 3.2 优化器状态 3.3 使用 0x04 Horovod 的优化器 4.1 hook 同步梯度 4.1.1 注册 hooks 4.1.2 归并梯度 4.1.2.1 MPI 函数 4.1.2.2 原理图 4.2 s…
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是腾讯深度学习平台的一部分,腾讯深度学习平台技术团队实现了数据并行技术加速DNN训练,提供公用算法简化实验过程.对微信语音识别应用,在模型收敛速度和模型性能上都取得了有效提升——相比单GPU 4.6倍加速比,数十亿样本的训练数天收敛,测…
[深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点[1][2],产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是Mariana的一部分,Marian…
%matplotlib inline 数据并行(选读) Authors: Sung Kim and Jenny Kang 在这个教程里,我们将学习如何使用 DataParallel 来使用多GPU. PyTorch非常容易就可以使用多GPU,用如下方式把一个模型放到GPU上: device = torch.device("cuda:0") model.to(device) GPU: 然后复制所有的张量到GPU上: mytensor = my_tensor.to(device) 请注意,…
PyTorch Data Parrallel数据并行 可选择:数据并行处理 本文将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多个 GPU 非常简单.可以将模型放在一个 GPU: device = torch.device("cuda:0") model.to(device) 可以复制所有的张量到 GPU: mytensor = my_tensor.to(device) 调用 my_tensor.to(device) 返回一个 my_tensor…
目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 C#并行编程-线程同步原语 C#并行编程-PLINQ:声明式数据并行 背景 通过LINQ可以方便的查询并处理不同的数据源,使用Parallel LINQ (PLINQ)来充分获得并行化所带来的优势. PLINQ不仅实现了完整的LINQ操作符,而且还添加了一些用于执行并行的操作符,与对应的LINQ相比,通过PLINQ可以获得明显的加速,但是具体的加速效果还要取决于具体的场景,不过在并行化的…
命令式数据并行   Visual C# 2010和.NETFramework4.0提供了很多令人激动的新特性,这些特性是为应对多核处理器和多处理器的复杂性设计的.然而,因为他们包括了完整的新的特性,开发人员和架构师必须学习一种新的编程模型. 这一章是一些新的类.结构体和枚举类型,你可以使用这里来处理数据并行的场景.这章将为你展示怎样创建并行代码和描述与每个场景相关的新概念,而不是关注并发编程中的最复杂的问题.这样你将可以更加充分的理解性能改进. 开始并行任务  使用先前版本的.NET Frame…
命令式数据并行   Visual C# 2010和.NETFramework4.0提供了很多令人激动的新特性,这些特性是为应对多核处理器和多处理器的复杂性设计的.然而,因为他们包括了完整的新的特性,开发人员和架构师必须学习一种新的编程模型. 这一章是一些新的类.结构体和枚举类型,你可以使用这里来处理数据并行的场景.这章将为你展示怎样创建并行代码和描述与每个场景相关的新概念,而不是关注并发编程中的最复杂的问题.这样你将可以更加充分的理解性能改进. 开始并行任务  使用先前版本的.NET Frame…
Tensorflow 是一个为数值计算(最常见的是训练神经网络)设计的流行开源库.在这个框架中,计算流程通过数据流程图(data flow graph)设计,这为更改操作结构与安置提供了很大灵活性.TensorFlow 允许多个 worker 并行计算,这对必须通过处理的大量训练数据训练的神经网络是有益的.此外,如果模型足够大,这种并行化有时可能是必须的.在本文中,我们将探讨 TensorFlow 的分布式计算机制. TensorFlow 计算图示例 数据并行 VS. 模型并行 当在多个计算节点…
本文内容 并行编程 数据并行 环境 计算 PI 矩阵相乘 把目录中的全部图片复制到另一个目录 列出指定目录中的所有文件,包括其子目录 最近,对多线程编程,并行编程,异步编程,这三个概念有点晕了,之前我研究了异步编程<VS 2013 C# 异步编程 async await>,现在猛然发觉,自己怎么有点不明白这三者之间有什么联系和区别了呢?有点说不清.道不明的感觉~ 因此,回顾了一下个人经历,屡屡思路~我刚接触计算机时,还是学校的 DOS 和 win 3.x,之后,学校换了 Windows 95,…