转载:http://www.csdn.net/article/2014-07-10/2820600 人工智能被认为是下一个互联网大事件,当下,谷歌.微软.百度等知名的高科技公司争相投入资源,占领深度学习的技术制高点,百度在2014年5月19日宣布曾领导谷歌的深度学习项目——Google Brain ,被誉为谷歌大脑之父的Andrew Ng加盟百度,正式领导百度研究院工作,尤其是Baidu Brain计划.7月7日,他应邀做客中国科学院自动化研究所,发表了<Deep Learning:Overvi…
浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep Learning),又叫Unsupervised Feature Learning或者Feature Learning,是目前非常热的一个研究主题. 本文将主要介绍Deep Learning的基本思想和常用的方法. 一. 什么是Deep Learning? 实际生活中,人们为了解决一个问题,如对象…
2017年3月22日下午,Facebook人工智能研究院院长.纽约大学终身教授Yann LeCun在清华大学大礼堂为校内师生以及慕名而来的业内人士呈现了一场主题为<深度学习与人工智能的未来(Deep Learning and the Future of AI)>的精彩公开课. 随着AlphaGo事件的不断发酵,神经网络成为时下人工智能产学领域万众瞩目的研究焦点,也成为普罗大众的热门话题.事实上,神经网络作为一种算法模型,很早就已经被广泛关注和研究,也曾长时间内陷入发展突破的低潮期.不过,在以G…
本文的参考的github工程链接:https://github.com/laubonghaudoi/CapsNet_guide_PyTorch 之前是看过一些深度学习的代码,但是没有养成良好的阅读规范,由于最近在学习CapsNet的原理,在Github找到了一个很好的示例教程,作者甚至给出了比较好的代码阅读顺序,私以为该顺序具有较强的代码阅读迁移性,遂以此工程为例将该代码分析过程记录于此: 1.代码先看main(),main()为工程中最为顶层的设计,能够给人对于整个流程的把控.而对于深度学习而…
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题.比如在下面的这个问题中:如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类.但如果情况变得复杂了一点呢?在上图中(图片来源),数据就变成了…
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题. 比如在下面的这个问题中: 如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类. 但如果情况变得复杂了一点呢?在上图中(图片来源),数据…
DNN(深度神经网络算法)现在是AI社区的流行词.最近,DNN 在许多数据科学竞赛/Kaggle 竞赛中获得了多次冠军. 自从 1962 年 Rosenblat 提出感知机(Perceptron)以来,DNN 的概念就已经出现了,而自 Rumelhart.Hinton 和 Williams 在 1986 年发现了梯度下降算法后,DNN 的概念就变得可行了.直到最近 DNN 才成为全世界 AI/ML 爱好者和工程师的最爱. 主要原因在于现代计算能力的可用性,如 GPU 和 TensorFlow 等…
上一次发博客已经是9月份的事了....这段时间公司的事实在是多,有写博客的时间都拿去看paper了..正好春节回来写点东西,也正好对这段时间做一个总结. 首先当然还是好好说点这段时间的主要工作:语义分割.semantic segmentation 应该是DL这几年快速发展的最重要的领域之一了,但可惜的事,在这方面大家走的并不是很远,还是有很多值得改进的地方,这当然是个很好的事情,特别是我这种想发paper弱渣..... 语义分割做的是什么事呢? 就是给你一张图,你要对其中的每个pixel做分类,…
http://www.jianshu.com/p/28f5473c66a3 翻译 | AI科技大本营(rgznai100) 参与 | reason_W 引言 过去2年,我一直积极专注于深度学习领域.我对深度学习的兴趣始于2015年初,那个时候Google刚刚开源Tensorflow.我根据Tensorflow的文档快速地尝试了几个例程,当时的感觉是深度学习并不简单.部分原因是因为深度学习的框架很新,也需要更好的硬件支持和耐心来摸索. 时间快进到2017年,我已经在深度学习的项目上花费了几百个小时…
原文:http://blog.sina.com.cn/s/blog_593af2a70102uwhl.html 一早出发,8点20就赶到现场, 人越聚越多,Ng提前几分钟到达现场,掌声一片.    Ng的报告总体上提到了五个方向.    1)Deep Learning相比于传统方法的优势           首先,一个很直观的图,随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高,后来这个在提问环节也有同学问道,是否会一直提高,Andrew Ng也坦诚需要面…