BDA3 Chapter 1 Probability and inference】的更多相关文章

1. uncertainty aleatoric uncertainty 偶然不确定性 epistemic uncertainty 认知不确定性 2. probability VS likelihood Pr(data|distribution); L(distribution|data); The likelihood function is unnormalized probability distribution describing uncertainty related to \tit…
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if the posterior distributions p(θ|x) are in the same family as the prior probability distributionp(θ), the prior and posterior are then called conjugate d…
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli trial)是只有两种可能结果的单次随机试验. 即:对于一个随机变量而言,P(X=1)=p以及P(X=0)=1-p.一般用抛硬币来举例.另外,此处也描述了伯努利过程: 一个伯努利过程(Bernoulli process)是由重复出现独立但是相同分布的伯努利试验组成,例如抛硬币十次. 维基百科中,伯努利过程…
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called "success" and "failure". In each trial the probability of success is $p$ and of failure is $(1-p)$. We are obs…
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta distribution(Conjugate Prior of Bernoulli distribution) The parameters a and b are often called hyperparameters because they control the distribution of…
Targeted learning methods build machine-learning-based estimators of parameters defined as features of the probability distribution of the data, while also providing influence-curve or bootstrap-based confidence internals. The theory offers a general…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\pi}\sigma}e^{-{1\over2}{(x-\mu)^2\over\sigma^2}}$$ The cumulative distribution function is defined by $$F(x; \mu, \sigma) = \Phi\left({x-\mu\over\sigma}\ri…
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \alpha, \beta) = \begin{cases}{1\over\beta-\alpha} & \mbox{if}\ \alpha < x < \beta\\ 0 & \mbox{otherwise} \end{cases} $$ The cumulative distribu…
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \begin{cases}\lambda e^{-\lambda x} & x\geq0\\ 0 & x < 0 \end{cases}$$ The exponential cumulative distribution function (CDF) is $$F(x; \lambda) =…
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) from an urn containing $N$ balls, of which $m$ are white and $N-m$ are black. If we let $X$ denote the number of white balls selected, then $$f(x; N, m,…
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, of being a success, are performed until a success occurs. If we let $X$ equal the number of failures required, then the geometric distribution mass function…
PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter $\lambda > 0$, if the probability mass function of $X$ is given by $$f(x; \lambda) = \Pr(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ for $x=0, 1, 2, \cd…
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$, we write $X \sim B(n, p)$. The probability of getting exactly $x$ successes in $n$ trials is given by the probability mass function: $$f(x; n, p) =…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) ADDITIONAL PRACTICE FOR THE FINAL In the following problems you will be asked to choose one of the four options (A)-(D). The options are sta…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Test of Hypotheses $$\text{Null}: H_0$$ $$\text{Alternative}: H_A$$ Assuming the null is true, the chance of getting data like the d…
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Estimating population means and percents Sampling assumptions: Simple Random Sample (SRS) Large enough so that the probability histo…
Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. Information h(x) Given a random variable and we ask how much information is received when we observe a specific value for thi…
听同事讲 Bayesian statistics: Part 2 - Bayesian inference 摘要:每天坐地铁上班是一件很辛苦的事,需要早起不说,如果早上开会又赶上地铁晚点,更是让人火烧眉毛.在城市里工作的人,很多是需要搭乘地铁上下班的,也包括同事M. 有一次M早上来得比较晚,进办公室以后就开始抱怨地铁又晚点了,而且同一周不只发生了一次.我说,作为 statistician,你就不能 predict 一下地铁会不会晚点吗?她说,"This is a very tricky prob…
CONTINUOUS RANDOM VARIABLES AND PDFS  连续的随机变量,顾名思义.就是随机变量的取值范围是连续的值,比如汽车的速度.气温.假设我们要利用这些參数来建模.那么就须要引入连续随机变量. 假设随机变量X是连续的,那么它的概率分布函数能够用一个连续的非负函数来表示,这个非负函数称作连续随机变量的概率密度函数(probability density function).并且满足: 假设B是一个连续的区间,那么: watermark/2/text/aHR0cDovL2Js…
https://github.com/lucasb-eyer/pydensecrf/blob/master/examples/inference.py 1.运行 先运行看看实现的结果: (deeplearning) userdeMBP:examples user$ python inference.py im1.png anno1.png out1.png Found a full-black pixel in annotation image, assuming it means 'unkno…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
Chapter 3-Classification .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bo…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
INDEX BAD EXAMPLE Improving Overall Performance Inserting Multiple Rows INSTEAD OF Inserting a Single Row Inserting Retrieved Data BAD EXAMPLE INSERT INTO Customers VALUES(NULL, 'Pep E. LaPew', '100 Main Street', 'Los Angeles', 'CA', ', 'USA', NULL,…
Keyword: Reject Inference Suppose there is a dataset of several attributes, including working conditions, credit history, and property, that have been provided by the bank. The sample classified the customers according to whether they paid off their…
Chapter 4. The class File Format Table of Contents 4.1. The ClassFile Structure 4.2. Names 4.2.1. Binary Class and Interface Names 4.2.2. Unqualified Names 4.2.3. Module and Package Names 4.3. Descriptors 4.3.1. Grammar Notation 4.3.2. Field Descript…
We consider two types of inference: finding the most likely state of the world consistent with some evidence computing arbitrary conditional probabilities. We then discuss two approaches to making inference more tractable on large , relational proble…
[统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causation 的区别 现实中遇到的很多问题实际上是因果问题,而不是预测. 因果问题分为两种:一种是 causal inference,比如给定两个变量 X.Y,希望找到一个衡量它们之间因果关系的参数 theta:另一种是 causal discovery,即给定一组变量,找到他们之间的因果关系.对于后面…
写在前面 这是HIT2019人工智能实验三,由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 实现贝叶斯网络的概率推导(Probabilistic Inference) 具体实验指导书见github 这里首先给出代码 知识部分 关于贝叶斯网络的学习,我参考的是这篇博客 贝叶斯网络(belief network) 这篇博客讲述的虽然全面,但细节部分,尤其是贝叶斯网络概率推导的具体实现部分,一笔带过.然而本次实验的要求就是实现贝叶斯网络的概率推导,因此我在学习完这篇博客的基础上,又把…