1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985. C. Koch and T. Poggio. Predicting the Visual World: Silenc…
这篇文章是图像显著性领域最具代表性的文章,是在1998年Itti等人提出来的,到目前为止引用的次数超过了5000,是多么可怕的数字,在它的基础上发展起来的有关图像显著性论文更是数不胜数,论文的提出主要是受到灵长类动物早期视觉系统的神经结构和行为所启发而产生了视觉注意系统.灵长类动物具有很强的实时处理复杂场景的能力,视觉信息进行深入的处理之前,对所收集到的感觉信息进行选择,这些选择可能减少场景理解的复杂性,这个选择过程在一个空间有限的视野区域即所谓的注意焦点(focus of attention,…
做图像处理,没有一定的知识储备是不可能的,但是一定要学会“借力打力”,搜集一些很实用的开源代码,你们看看是否需要~~ 场景识别: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling https://github.com/alexgkendall/caffe-segnet Tracking: Learning to Track: Online Multi…
SLAM(Simultaneous Localization and Mapping)是业界公认视觉领域空间定位技术的前沿方向,中文译名为“同步定位与地图构建”,它主要用于解决机器人在未知环境运动时的定位和地图构建问题.本次阅面科技资深研究员赵季也将从SLAM方向着手,为大家展现更深层次的技术干货. 赵季:阅面科技资深研究员.2012年获华中科技大学博士学位,2012年至2014年在CMU机器人研究所做博士后.曾在三星研究院从事深度相机.SLAM.人机交互方面的研究.目前专注于空间感知技术的研发…