1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985. C. Koch and T. Poggio. Predicting the Visual World: Silenc…
视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mechanism,VA),即面对一个场景时,人类自动地对感兴趣区域进行处理而选择性地忽略不感兴趣区域,这些人们感兴趣区域被称之为显著性区域.如图所示,当看到这幅图像时,图中的四个人最能引起人的注意. 人类视觉注意机制有两种策略: 1)自底而上基于数据驱动的注意机制 仅受感知数据的驱动,将人的视点指导到场…
这篇文章是图像显著性领域最具代表性的文章,是在1998年Itti等人提出来的,到目前为止引用的次数超过了5000,是多么可怕的数字,在它的基础上发展起来的有关图像显著性论文更是数不胜数,论文的提出主要是受到灵长类动物早期视觉系统的神经结构和行为所启发而产生了视觉注意系统.灵长类动物具有很强的实时处理复杂场景的能力,视觉信息进行深入的处理之前,对所收集到的感觉信息进行选择,这些选择可能减少场景理解的复杂性,这个选择过程在一个空间有限的视野区域即所谓的注意焦点(focus of attention,…
做图像处理,没有一定的知识储备是不可能的,但是一定要学会“借力打力”,搜集一些很实用的开源代码,你们看看是否需要~~ 场景识别: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling https://github.com/alexgkendall/caffe-segnet Tracking: Learning to Track: Online Multi…
1. Bayesian Matting, Chuang, CVPR 2001.http://grail.cs.washington.edu/projects/digital-matting/papers/cvpr2001.pdf  论文下载http://grail.cs.washington.edu/projects/digital-matting/image-matting/项目网址 2. GraphCut Segmentation System, Rother, 2004.http://pd…
fast作为几乎最快的角点检测算法,一般说明不附带描述子.参考综述:图像的显著性检测--点特征 详细内容,请拜访原=文章:Fast特征点检测算法 在局部特征点检测快速发展的时候,人们对于特征的认识也越来越深入,近几年来许多学者提出了许许多多的特征检测算法及其改进算法,在众多的特征提取算法中,不乏涌现出佼佼者. Edward Rosten和Tom Drummond两位大神经过研究,于2006年在<Machine learning for high-speed corner detection>中…
当前图像视觉各个领域文献资料的索引,包含计算机视觉.图像处理.文本(图像)分析.视频分析.模式识别等主题.如果对哪个方向比较感兴趣,可以查看这个方向的比较重要的Paper,每一个大的目录后面都对应一些更细的研究方向,选择某个研究方向就能获得该领域从经典到最新的文献资料索引. 1:帮助和FAQ 版权声明,怎样找到文章.介绍等. 2:期刊会议组织 期刊列表,会议名称列表,研究组织 3:综合信息         书籍,合集,回顾,综述,概述 4:理念.基础.传感 计算机视觉,正则化,连接主义,形态学,…
作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 ​ 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过程中可能会逐渐被稀释,另外卷积神经网络的感受野大小与深度是不成正比的,目前很多流行方法都是引入Attention(注意力机制),但是本文是基于U型结构的特征网络研究池化对显著性检测的改进,具体步骤是引入了两个模块GGM(Global Guidance Module,全局引导模块)和FAM(Featu…
SLAM(Simultaneous Localization and Mapping)是业界公认视觉领域空间定位技术的前沿方向,中文译名为“同步定位与地图构建”,它主要用于解决机器人在未知环境运动时的定位和地图构建问题.本次阅面科技资深研究员赵季也将从SLAM方向着手,为大家展现更深层次的技术干货. 赵季:阅面科技资深研究员.2012年获华中科技大学博士学位,2012年至2014年在CMU机器人研究所做博士后.曾在三星研究院从事深度相机.SLAM.人机交互方面的研究.目前专注于空间感知技术的研发…
收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享的paper.code或者数据集不多,暂时没收录了. 2)排名按照字母顺序 3)主要按照博客的域名进行分类,不代表作者当前工作所在机构 4)更新日期有可能不是最最新的日期,供参考 1        美国 1.1     MIT 1.1.1   Antonio Torralba MIT助理教授Anto…