欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 上一篇讲了深度学习方法(十):卷积神经网络结构变化--Maxout Networks,Network In Network,Global Average Pooling,本篇讲一讲Google的Inception系列net,以及还是Google的Xception.(扯一下,Google的Researcher们还是给了很多很棒的…
什么是1X1卷积 11的卷积就是对上一层的多个feature channels线性叠加,channel加权平均. 只不过这个组合系数恰好可以看成是一个11的卷积.这种表示的好处是,完全可以回到模型中其他常见NN的框架下,不用定义新的层. 比如上一层通过100个卷积核得到了 W H * 100的数据,进行10个1X1卷积后得到 W * H * 10 的数据,它是对每个features channel像素点进行累计放缩. 为什么要用这个? 通过这样的方式,通道之间的信息交互,卷积核通道也可以简单的升…