乐观锁.悲观锁.要实践 http://chenzhou123520.iteye.com/blog/1860954 <mysql悲观锁总结和实践> http://chenzhou123520.iteye.com/blog/1863407 <mysql乐观锁总结和实践> http://outofmemory.cn/sql/optimistic-lock-and-pessimistic-lock 注意,以下的表里面的列名,一定要用 `` 反引号来包括. mysql> create…
Java 中15种锁的介绍 Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等,在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁 / 非公平锁 可重入锁 / 不可重入锁 独享锁 / 共享锁 互斥锁 / 读写锁 乐观锁 / 悲观锁 分段锁 偏向锁 / 轻量级锁 / 重量级锁 自旋锁 上面是很多锁的名词,这些分类并不是全是指锁的状态,有的指锁的特性,有的指锁的设计,下面总结的内容是对每个锁的名词进行一定…
在多线程环境中,多个线程可能会同时访问同一个资源,为了避免访问发生冲突,可以根据访问的复杂程度采取不同的措施 原子操作适用于简单的单个操作,无锁算法适用于相对简单的一连串操作,而线程锁适用于复杂的一连串操作 原子操作 修改状态要么成功且状态改变,要么失败且状态不变,并且外部只能观察到修改前或者修改后的状态,修改中途的状态不能被观察到 .NET 中,System.Threading.Interlocked 类提供了用于执行原子操作的函数,这些函数接收引用参数(ref),也就是变量的内存地址,然后针…
在多线程环境中,多个线程可能会同时访问同一个资源,为了避免访问发生冲突,可以根据访问的复杂程度采取不同的措施 原子操作适用于简单的单个操作,无锁算法适用于相对简单的一连串操作,而线程锁适用于复杂的一连串操作 原子操作 修改状态要么成功且状态改变,要么失败且状态不变,并且外部只能观察到修改前或者修改后的状态,修改中途的状态不能被观察到 .NET 中,System.Threading.Interlocked 类提供了用于执行原子操作的函数,这些函数接收引用参数(ref),也就是变量的内存地址,然后针…
Java 中15种锁的介绍 1,在读很多并发文章中,会提及各种各样的锁,如公平锁,乐观锁,下面是对各种锁的总结归纳: 公平锁/非公平锁 可重入锁/不可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲观锁 分段锁 偏向锁/轻量级锁/重量级锁 自旋锁 上面是很多锁的名词,这些分类并不是全是指锁的状态,有的指锁的特性,有的指锁的设计,下面总结的内容是对每个锁的名词进行一定的解释. 一,公平锁/非公平锁   公平锁: 公平锁是指多个线程按照申请锁的顺序来获取锁. 非公平锁 非公平锁是指多个线程获取锁的…
GIL锁 计算机有4核,代表着同一时间,可以干4个任务.如果单核cpu的话,我启动10个线程,我看上去也是并发的,因为是执行了上下文的切换,让看上去是并发的.但是单核永远肯定时串行的,它肯定是串行的,cpu真正执行的时候,因为一会执行1,一会执行2.....正常的线程就是这个样子的.但是,在python中,无论有多少核,永远都是假象.无论是4核,8核,还是16核.......不好意思,同一时间执行的线程只有一个(线程),它就是这个样子的.这个是python的一个开发时候,设计的一个缺陷,所以说p…
举例讲解Python中的死锁.可重入锁和互斥锁 一.死锁 简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况. 1.迭代死锁 该情况是一个线程"迭代"请求同一个资源,直接就会造成死锁: import threading import time class MyThread(threading.Thread):   def run(self):     global num     time.sleep(1)     if…
总览图 如果文中内容有错误,欢迎指出,谢谢. 悲观锁.乐观锁 悲观锁.乐观锁使用场景是针对数据库操作来说的,是一种锁机制. 悲观锁(Pessimistic Lock):顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁.传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁. 乐观锁(Optimistic Lock):顾名思义,就是很乐观,每次去拿数据的时候都认为别…
为了避免并发,防止竞争.内核提供了一组同步方法来提供对共享数据的保护. 我们的重点不是介绍这些方法的详细用法,而是强调为什么使用这些方法和它们之间的差别. Linux 使用的同步机制可以说从2.0到2.6以来不断发展完善.从最初的原子操作,到后来的信号量,从大内核锁到今天的自旋锁.这些同步机制的发展伴随 Linux从单处理器到对称多处理器的过度:伴随着从非抢占内核到抢占内核的过度.锁机制越来越有效,也越来越复杂.目前来说内核中原子操作多用来做计数使用,其它情况最常用的是两种锁以及它们的变种:一个…
以多线程为例写个互斥锁 from threading import Thread ,Lockimport timemutex = Lock() n = 100 def task(): global n with mutex: temp = n time.sleep(0.1) n= temp-1 if __name__ == '__main__': t_l = [] start_time = time.time() for i in range(100): t = Thread(target=ta…
针对Cpython所拥有的GIL锁作用:由于Cpython解释器在运行python文件时, Cpython进程与其运行文件所产生的主进程是一个进程(文件进程相当于Cpython的一个线程) 线程的特点是数据资源是共享的,而多个线程又都要共享Cpython的解释权限,共享意味着竞争,有竞争数据就不安全, 所以Cpython的GIL锁(Cpython的一个线程) 就产生了,根本作用是,当python文件中的线程想要执行其代码,必须获得GIL权限,否则不能执行, 所以cpu的多核优势也没有了,除非多开…
本文总结自: https://blog.csdn.net/luckey_zh/article/details/53815694 互斥锁: 若对象有互斥锁,则在任一时刻,只能有一个线程访问对象.类锁.对象锁都属于对象监视器,而对象监视器是基于互斥锁的. 对象监视器,详见: https://www.cnblogs.com/yanze/p/9774388.html 类锁.对象锁层次: java层次 类锁即锁住了类,对象锁即锁住实例对象 synchronized使用场景分以下几种: 1. 一般方法 对象…
同步锁/互斥锁 (Lock) import time import threading def sub(): global num #在每个线程中都获取这个全局变量 #num-=1 temp=num time.sleep(0.1) num =temp-1 # 对此公共变量进行-1操作 num = 100 #设定一个共享变量 thread_list = [] for i in range(100): t = threading.Thread(target=sub) t.start() thread…
首先不要钻概念牛角尖,这样没意义. 也许java语法层面包装成了sycnchronized或者明确的XXXLock,但是底层都是一样的.无非就是哪种写起来方便而已. 锁就是锁而已,避免多个线程对同一个共享的数据并发修改带来的数据混乱. 锁要解决的大概就只有这4个问题: “谁拿到了锁“这个信息存哪里(可以是当前class,当前instance的markword,还可以是某个具体的Lock的实例) 谁能抢到锁的规则(只能一个人抢到 - Mutex:能抢有限多个数量 - Semphore:自己可以反复…
同步锁作用: 在我当前包含(lock.acquire() 和 lock.release()之间 )的代码没有执行完成,不进行线程切换,必须等我执行完了,下一个线程才能继续执行(为什么要用同步锁,假如我们同时在操作一个数据的时候,比如数字100,10个线程同时操作他减1的时候,每个线程减10次,我们想要拿到结果为0,这时候没锁的情况下;得到的结果会不准确) #-*-conding:utf-8-*-import threadingimport time lock = threading.Lock()…
python 并发编程 多线程 GIL全局解释器锁基本概念 python 并发编程 多线程 GIL与Lock python 并发编程 多线程 GIL与多线程…
两者都包括对资源的独占. 区别是 1:互斥是通过竞争对资源的独占使用,彼此没有什么关系,也没有固定的执行顺序. 2:同步是线程通过一定的逻辑顺序占有资源,有一定的合作关系去完成任务.…
import time from threading import Lock,Thread num = 100 def f1(loc): loc.acquire() global num tmp = num tmp -= 1 time.sleep(0.001) num = tmp loc.release() if __name__ == '__main__': t_loc = Lock() t_list = [] for i in range(10): t = Thread(target=f1,…
线程同步     同属于一个进程的不同线程是共享内存的,因而在执行过程中需要考虑数据的一致性.     假设:进程有一变量i=0,线程A执行i++,线程B执行i++,那么最终i的取值是多少呢?似乎一定是i=2:其实不然,如果没有考虑线程同步,i的取值可能是1.我们先考虑自加操作的过程:a,首先将内存中i的值copy到寄存器:b,对寄存器中i的copy进行自加:c,将寄存器中自加的结果返回到内存中.回到例子,如果线程A执行完abc三个步骤,线程B在执行者三个步骤,那么结果就应该为2.但是自加不是原…
POSIX threads(简称Pthreads)是在多核平台上进行并行编程的一套常用的API.线程同步(Thread Synchronization)是并行编程中非常重要的通讯手段,其中最典型的应用就是用Pthreads提供的锁机制(lock)来对多个线程之间共 享的临界区(Critical Section)进行保护(另一种常用的同步机制是barrier). Pthreads提供了多种锁机制:(1) Mutex(互斥量):pthread_mutex_***(2) Spin lock(自旋锁):…
上篇文章也蛮好,线程同步之条件变量与互斥锁的结合: http://www.cnblogs.com/charlesblc/p/6143397.html   现在有这篇文章: http://blog.csdn.net/goodluckwhh/article/details/8564319   POSIX定义了一系列同步对象用于同步和互斥.同步对象是内存中的变量属于进程中的资源,可以按照与访问数据完全相同的方式对其进行访问.默认情况下POSIX定义的这些同步对象具有进程可见性,即同步对象只对定义它的进…
一. linux为什么需要临界段,信号量,互斥锁,自旋锁,原子操作? 1.1. linux内核后期版本是支持多核CPU以及抢占式调度.这里就存在一个并发,竞争状态(简称竟态). 1.2. 竞态条件 发生在两个或更多线程操纵一个共享数据项时,在多处理器(MP)计算机中也存在并发,其中每个处理器中共享相同数据的线程同时执行 1.3. 临界段,信号量,互斥锁,自旋锁,原子操作可以从不同情形解决上述问题 二. 临界区(Critical Section) 2.1.  保证在某一时刻只有一个线程能访问数据的…
百篇博客系列篇.本篇为: v27.xx 鸿蒙内核源码分析(互斥锁篇) | 比自旋锁丰满的互斥锁 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当立贞节牌坊 | 51.c.h .o v27.xx 鸿蒙内核源码分析(互斥锁篇) | 比自旋锁丰满的互斥锁 | 51.c.h .o v28.xx 鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 51.c.h .o v29.xx 鸿蒙内核源码分析(信号量篇) | 谁在负责解决任务的同步 |…
之前还是写过蛮多的关于锁的文章的: http://www.cnblogs.com/charlesblc/p/5994162.html <[转载]Java中的锁机制 synchronized & 偏向锁 & 轻量级锁 & 重量级锁 & 各自> http://www.cnblogs.com/charlesblc/p/5935326.html <[Todo] 乐观悲观锁,自旋互斥锁等等> http://www.cnblogs.com/charlesblc/…
一.posix 信号量 信号量的概念参见这里.前面也讲过system v 信号量,现在来说说posix 信号量. system v 信号量只能用于进程间同步,而posix 信号量除了可以进程间同步,还可以线程间同步.system v 信号量每次PV操作可以是N,但Posix 信号量每次PV只能是1.除此之外,posix 信号量还有命名和匿名之分(man 7 sem_overview): 1.命名信号量 名字以/somename 形式分辨,只能有一个/ ,且总长不能超过NAME_MAX - 4(一…
  自旋锁 毫秒以下. 自旋锁用于多个CPU系统中,在单处理器系统中,自旋锁不起锁的作用,只是禁止或启用内核抢占.在自旋锁忙等待期间,内核抢占机制还是有效的,等待自旋锁释放的线程可能被更高优先级的线程抢占CPU. 来确定锁现是否可用,然后在忙等待的循环中"自旋"直到锁可用为止. 通用自旋锁 表示解锁状态,说明有1个资源可用:0或负值表示加锁状态,0说明可用资源数为0.Linux内核为通用自旋锁提供了API函数初始化.测试和设置自旋锁.API函数功能说明如下. 宏定义 功能说明 spin…
前言 Golang中有两种类型的锁,Mutex (互斥锁)和RWMutex(读写锁)对于这两种锁的使用这里就不多说了,本文主要侧重于从源码的角度分析这两种锁的具体实现. 引子问题 我一般喜欢带着问题去看源码.那么对于读写锁,你是否有这样的问题,为什么可以有多个读锁?有没有可能出现有协程一直无法获取到写锁的情况?带着你的疑问来往下看看,具体这个锁是如何实现的. 如果你自己想看,我给出阅读的一个思路,可以先看读写锁,因为读写锁的实现依赖于互斥锁,并且读写锁比较简单一些,然后整理思路之后再去想一下实际…
POSIX信号量相关函数 sem_open 功能: initialize and open a named semaphore 原型: sem_t *sem_open(const char *name, int oflag); 参数: name : 信号量的名字 oflag : 返回值: 成功 : 返回新信号量的地址 失败 : SEM_FAILED errno Link with -pthread sem_close 功能: close a named semaphore 原型: int sem…
本文主要讲解.Net基于Threading.Mutex实现互斥锁 基础互斥锁实现 基础概念:和自旋锁一样,操作系统提供的互斥锁内部有一个数值表示锁是否已经被获取,不同的是当获取锁失败的时候,它不会反复进行重试,而且让线程进入等待状态,并把线程对象添加到锁关联的队列中,另一个线程释放锁时会检查队列中是否有线程对象,如果有则通知操作系统唤醒该线程,因为获取锁的线程对象没有进行运行,即使锁长时间不释放也不会消耗CPU资源,但让线程进入等待状态和从等待状态唤醒的时间比自旋锁重试的纳秒级时间要长 wind…
转自:http://lobert.iteye.com/blog/1762844 互斥锁属性 使用互斥锁(互斥)可以使线程按顺序执行.通常,互斥锁通过确保一次只有一个线程执行代码的临界段来同步多个线程.互斥锁还可以保护单线程代码. 要更改缺省的互斥锁属性,可以对属性对象进行声明和初始化.通常,互斥锁属性会设置在应用程序开头的某个位置,以便可以快速查找和轻松修改.表 4–1 列出了用来处理互斥锁属性的函数. 表 4–1 互斥锁属性例程 操作 相关函数说明 初始化互斥锁属性对象 pthread_mut…