MapReduce 编程模型概述】的更多相关文章

MapReduce 编程模型给出了其分布式编程方法,共分 5 个步骤:1) 迭代(iteration).遍历输入数据, 并将之解析成 key/value 对.2) 将输入 key/value 对映射(map) 成另外一些 key/value 对.3) 依据 key 对中间数据进行分组(grouping).4) 以组为单位对数据进行归约(reduce).5) 迭代. 将最终产生的 key/value 对保存到输出文件中.MapReduce 将计算过程分解成以上 5 个步骤带来的最大好处是组件化与并…
上次新霸哥给大家介绍了一些hadoop的相关知识,发现大家对hadoop有了一定的了解,但是还有很多的朋友对mapreduce很模糊,下面新霸哥将带你共同学习mapreduce编程模型. mapreduce编程模型可以利用大量的商用服务器构成大规模集群来解决处理千兆级别的数据量问题.mapreduce编程模型有两个比较独立的步骤,分别是map和reduce map:比较常见的就是数据初始读取和转换的步骤,同时在这个步骤中,每个独立的输入数据记录都进行并行处理. Reduce: 一个数据整合或者加…
一.简单介绍 1.MapReduce 应用广泛的原因之中的一个在于它的易用性.它提供了一个因高度抽象化而变得异常简单的编程模型. 2.从MapReduce 自身的命名特点能够看出,MapReduce 由两个阶段组成:Map 和Reduce .用户仅仅需编写map( ) 和reduce( ) 两个函数,就可以完毕简单的分布式程序的设计.   1)map ( ) 函数以key/value 对作为输入,产生另外一系列key/value 对作为中间输出写入本地磁盘.MapReduce 框架会自己主动将这…
本文基于Windows平台Eclipse,以使用MapReduce编程模型统计文本文件中相同单词的个数来详述了整个编程流程及需要注意的地方.不当之处还请留言指出. 前期准备 hadoop集群的搭建 编程环境搭建 1.将官网下载的hadoop安装包解压,并记住下图所示的目录 2.创建java project,右键工程--->build path--->Configure build path 3.进行如下图操作 4.新建MapReduce编程要使用的环境包,如下图操作 5.将下图所示的commo…
MapReduce应用广泛的原因之一就是其易用性,提供了一个高度抽象化而变得非常简单的编程模型,它是在总结大量应用的共同特点的基础上抽象出来的分布式计算框架,在其编程模型中,任务可以被分解成相互独立的子问题.MapReduce编程模型给出了分布式编程方法的5个步骤: 迭代,遍历输入数据,将其解析成key/value对: 将输入key/value对映射map成另外一些key/value对: 根据key对中间结果进行分组(grouping): 以组为单位对数据进行归约: 迭代,将最终产生的key/v…
Hadoop集群_WordCount运行详解--MapReduce编程模型 下面这篇文章写得非常好,有利于初学mapreduce的入门 http://www.nosqldb.cn/1369099810935.html…
转自:https://www.zybuluo.com/frank-shaw/note/206604 MapReduce基本过程 关于MapReduce中数据流的传输过程,下图是一个经典演示:  关于上图,可以做出以下逐步分析: 输入数据(待处理)首先会被切割分片,每一个分片都会复制多份到HDFS中.上图默认的是分片已经存在于HDFS中. Hadoop会在存储有输入数据分片(HDFS中的数据)的节点上运行map任务,可以获得最佳性能(数据TaskTracker优化,节省带宽). 在运行完map任务…
批处理引擎MapReduce编程模型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce是一个经典的分布式批处理计算引擎,被广泛应用于搜索引擎索引构建,大规模数据处理等场景中,具有易于编程,良好的扩展性与容错性以及高吞吐率等特点.它主要由两部分组成:编程模型和运行时环境.其中编程模型为用户提供了非常易用的编程接口,用户只需像编写串行程序一样实现几个简单的函数即可实现一个分布式程序,而其他比较复杂的工作,如节点间的通信,节点失效,数据切分等,全部由MapReduc…
Abstract: 本文继续上文介绍CUDA编程模型关于核函数以及错误处理部分 Keywords: CUDA核函数,CUDA错误处理 开篇废话 今天的废话就是人的性格一旦形成,那么就会成为最大的指向标,或者说一个人的性格思维方式能够决定这个人的全部生命轨迹,比如有人真的爱学习(比如我,嘻嘻嘻)有人真的不爱学习,没有优劣,只是两种生活态度,因为学习这个事你学一辈子也学不完人类智慧的九牛一毛,而不学习可以有更多的时间进行社会实践,融入社会,荣华富贵,享受生命.这是两种性格,没有好坏,毕竟每个人评价生…
Abstract: 本文介绍CUDA编程模型的简要结构,包括写一个简单的可执行的CUDA程序,一个正确的CUDA核函数,以及相应的调整设置内存,线程来正确的运行程序. Keywords: CUDA编程模型,CUDA编程结构,内存管理,线程管理,CUDA核函数,CUDA错误处理 开篇废话 过年了,祝大家新年快乐,新年希望自己学习的东西能都学会 这是一只不爱学习的狗,总看电视! 编程模型就是告诉我们如何写CUDA程序,如果做过C开发的同学或者其他开发的同学都知道做个完整的项目不只是写代码,还有需求分…
学习大数据接触到的第一个编程思想 MapReduce.   前言 之前在学习大数据的时候,很多东西很零散的做了一些笔记,但是都没有好好去整理它们,这篇文章也是对之前的笔记的整理,或者叫输出吧.一来是加深自己的理解,二来是希望这些东西能帮助想要学习大数据或者说正在学习大数据的朋友.如果你看到里面的东西,让你知道了它,这也是一种进步嘛.说不定就开启了你的另一扇大门呢?   先来看一个问题 在讲 MapReduce 之前,我们先来看一个问题.我们都知道,在大数据场景中,最先让人了解到的就是数据量大.当…
  通过前面的实例,可以基本了解MapReduce对于少量输入数据是如何工作的,但是MapReduce主要用于面向大规模数据集的并行计算.所以,还需要重点了解MapReduce的并行编程模型和运行机制.   我们知道,MapReduce计算模型主要由三个阶段构成:Map.shuffle.Reduce.Map和Reduce操作需要我们自己定义相应Map类和Reduce类.而shuffle则是系统自动帮我们实现的,是MapReduce的"心脏",是奇迹发生的地方.是其主要流程基本如下图所示…
对于MapReduce模型的实现,有Java等一些语言实现了接口,或者用像Hive/Pig这样的平台来操作.MapReduce由Map函数.Reduce函数和Main函数实现.第一步,源数据文件按默认文件系统块大小分割成M个数据块后传给M个Map函数,M个Map函数分布在N台机器上.Map函数接受两个参数传入,第一个参数是键值(key),第二个参数是数据值(value),其实这就是一个tuple.文件中一行就是一个tuple的元素,key就是行在文件内的偏移量(offset).给Map的数据看上…
# 文本前期处理 strl_ist = str.replace('\n', '').lower().split(' ') count_dict = {} # 如果字典里有该单词则加 1,否则添加入字典 for str in strl_ist: if str in count_dict.keys(): count_dict[str] = count_dict[str] + 1 else: count_dict[str] = 1 建一个hash表,将文本中的每个词都放在这个hash表里面,如果这个词…
传统的串行处理方式 有四组文本数据: "the weather is good", "today is good", "good weather is good", "today has good weather" 对这些文本数据进行词频统计: import java.util.Hashtable; import java.util.Iterator; import java.util.StringTokenizer; /**…
本文主要介绍MapReduce编程模型的原理和基于Hadoop的MD5暴力破解思路. 一.MapReduce的基本原理 Hadoop作为一个分布式架构的实现方案,它的核心思想包括以下几个方面:HDFS文件系统,MapReduce的编程模型以及RPC框架.无论是怎样的架构,一个系统的关键无非是存储结构和业务逻辑.HDFS分布式文件系统是整个Hadoop的基础.在HDFS文件系统之中,大文件被分割成很多的数据块,每一块都有可能分布在集群的不同节点中.也就是说在HDFS文件系统中,文件的情况是这样的:…
MapReduce编程模型之案例 wordcount 输入数据 atguigu atguiguss sscls clsjiaobanzhangxuehadoop 输出数据 atguigu 2banzhang 1cls 2hadoop 1jiao 1ss 2xue 1 Mapper 将MapTask传给我们的文本内容先转换成String atguigu atguigu 根据空格将这一行切分成单词 atguigu atguigu 将单词输出为<单词,1> atguigu,1 atguigu,1 R…
MapReduce编程基础 1. WordCount示例及MapReduce程序框架 2.  MapReduce程序执行流程 3.  深入学习MapReduce编程(1) 4. 参考资料及代码下载 <1>. WordCount示例及MapReduce程序框架  首先通过一个简单的程序来实际运行一个MapReduce程序,然后通过这个程序我们来哦那个结一下MapReduce编程模型. 下载源程序:/Files/xuqiang/WordCount.rar,将该程序打包成wordcount.jar下…
mapreduce编程准备 学习mapreduce编程之前需要做一些概念性的了解,这是做的一些课程学习笔记,以便以后时不时的翻出来学习下,之前看过一篇文章大神们都是时不时的翻出基础知识复习下,我也做点笔记吧. 1.mapreduce定义 源于Google的MapReduce论文(如果想更深入的学习,可以搜一下) √ 发表于2004年12月 √ Hadoop Mapreduce是Google MapReduce克隆版. MapReduce特点 √ 易于编程 √ 良好的扩展性 √ 高容错性 √ 适合…
1.MapReduce 编程模型的5个步骤: 1)迭代,将输入数据解析成 key/value 对: 2)将解析的 key/value经过Map处理映射成另一组key/value对: 3)根据key进行分组: 4)以分组为单位进行归约(Reduce 过程): 5)迭代,输出最终结果. 2.MapReduce编程模型模板: 在进行编程过程只需改变Map()和Reduce()方法,如果没有Reduce过程时需要对run()作适当调整. import java.io.IOException; impor…
http://blog.csdn.net/pipisorry/article/details/50931274 spark基本概念 Spark一种与 Hadoop 相似的通用的集群计算框架,通过将大量数据集计算任务分配到多台计算机上,在性能和迭代计算上很有看点,提供高效内存计算,现在是Apache孵化的顶级项目. Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的.低延迟的数据分析应用程序.Spa…
分布式并行编程用于解决大规模数据的高效处理问题.分布式程序运行在大规模计算机集群上,集群中计算机并行执行大规模数据处理任务,从而获得海量计算能力. MapReduce是一种并行编程模型,用于大规模数据集的并行运算,那么MapReduce又是如何进行并行编程的呢? MapReduce采用“分而治之”的策略,将存储在分布式文件系统的大数据集切分成独立小数据块(即Split,分片),这些分片可以被多个Map任务并行处理.MapReduce强调“计算向数据靠拢”而非“数据向计算靠拢”,传统模式下,对数据…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spark的用户程序,包含了一个Driver Program 和集群中多个的Executor: l驱动程序(Driver Program):运行Application的main()函数并且创建SparkContext,通常用SparkContext代表Driver Program: l执行单元(Executor):…
前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark基于YARN的运行流程 Apache Spark是什么? Spark是一个用来实现快速而通用的集群计算的平台.扩展了广泛使用的MapReduce计算模型,而且高效地支持更多的计算模式,包括交互式查询和流处理.在处理大规模数据集的时候,速度是非常重要的.Spark的一个重要特点就是能够在内存中计算,因…
paip.函数式编程方法概述以及总结 1     函数式编程:函数式风格..很多命令式语言里支持函数式编程风格 1.1      起源 (图灵机,Lisp机器, 神经网络计算机) 1.2      函数式编程语言有哪些 2     命令式语言(java,c#,php等)里使用函数式编程风格 3     函数式编程 应用场合 4     函数式编程的特点 4.1      函数是函数式编程的基本单位 4.2      保存状态 4.3      函数式编程的抽象本质 4.4      -----结…
Ubuntu系统 (我用到版本号是140.4) ubuntu系统是一个以桌面应用为主的Linux操作系统,Ubuntu基于Debian发行版和GNOME桌面环境.Ubuntu的目标在于为一般用户提供一个最新的.同时又相当稳定的主要由自由软件构建而成的操作系统,它可免费使用,并带有社团及专业的支持应. 作为Hadoop大数据开发测试环境, 建议大家不要在windows上安装CgyWin来学习或研究, 直接用Vmware+ubuntu来学习. 下载 www.vmware.com这里下载vmware,…
前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角色:一个是JobTracker,一个是TaskTracker,前者用于管理和调度工作,后者用于执行工作. 一般来说,一个Hadoop集群由一个JobTracker和N个TaskTracker构成. 执行流程 每次计算任务都可以分为两个阶段,Map阶段和Reduce阶段. 其中,Map阶段接收一组键值…
搜狐视频的屌丝男士第二季大结局了,惊现波多野老师,怀揣着无比鸡冻的心情啊,可惜随着剧情的推进发展,并没有出现期待中的屌丝奇遇,大鹏还是没敢冲破尺度的界线.想百度些种子吧,又不想让电脑留下污点证据,要知道大洋彼岸有个棱镜计划,只好作罢.不如看看书吧,书中自有颜如玉. 开始本次读书笔记前,先扯两个哲学观点,提高下境界.第一个就是<Data-Intensive Text Processing with mapReduce>读书笔记前言中谈到的,大数据产生了大价值,对应的思想很简单:量变导致了质变.第…
在当前计算机应用中,对快速并行计算的需求是广泛的,归纳起来,主要有三种类型的应用需求: 计算密集(Computer-Intensive)型应用,如大型科学project计算与数值模拟: 数据密集(Data-Intensive)型应用,如数字图书馆.数据仓库.数据挖掘和计算可视化等: 网络密集(Network-Intensive)型应用,如协同工作.遥控和远程医疗诊断等. 并行编程模型主要有三种:适用于共享内存的多线程编程模型.适用于分布内存的消息传递编程模型,混合编程模型. 在计算机系统中.处理…
2.并行编程模型和工具 – MPI – MPI(Message Passing Interface)是一种消息传递编程模型,服务于进程通信.它不特指某一个对它的实现,而是一种标准和规范的代表,它是一种库描述,而不是一种语言,易于使用且具有高可移植性.说白了就是一些编程接口. – OpenMP – Open Multi-Processing是适用于共享内存多处理器体系结构的可移植并行编程模型,接口由SGI公司发起.包含编译指导.运行函数库和环境变量三部分,具有串行等价性(无论使用一个还是多个线程运…