linux用户态与内核态】的更多相关文章

究竟什么是用户态,什么是内核态,这两个基本概念以前一直理解得不是很清楚,根本原因个人觉得是在于因为大部分时候我们在写程序时关注的重点和着眼的角度放在了实现的功能和代码的逻辑性上,先看一个例子: 1)例子 C代码 ```1. void testfork() { 2. if(0 = = fork()) { 3. printf("create new process success!\n"); 4. } 5. printf("testfork ok\n"); 6. } 这…
一. Unix/Linux的体系架构 如上图所示,从宏观上来看,Linux操作系统的体系架构分为用户态和内核态(或者用户空间和内核).内核从本质上看是一种软件——控制计算机的硬件资源,并提供上层应用程序运行的环境.用户态即上层应用程序的活动空间,应用程序的执行必须依托于内核提供的资源,包括CPU资源.存储资源.I/O资源等.为了使上层应用能够访问到这些资源,内核必须为上层应用提供访问的接口:即系统调用. 系统调用是操作系统的最小功能单位,这些系统调用根据不同的应用场景可以进行扩展和裁剪,现在各种…
1.特权级特权级用来管理和控制程序执行.如Intel x86架构的CPU,有0~3四个特权级,0级最高,3级最低.硬件在执行每条指令时都会检查指令具有的特权级.硬件提供了特权级使用机制,对操作系统来说,负责确定指令的特权级.如Linux中,只使用了0和3级特权级,工作在0级特权级的指令具有CPU提供的最高权力,而三级特权级指令只具有CPU提供的最基本权力. 2.用户态和内核态的区别当程序运行在3级特权级时,称为运行在用户态,普通的用户进程一般运行在用户态.当程序运行在0级特权级时,称为运行在内核…
[说明]转载自 http://my.oschina.net/liubin/blog/27795 究竟什么是用户态,什么是内核态,这两个基本概念以前一直理解得不是很清楚,根本原因个人觉得是在于因为大部分时候我们在写程序时关注的重点和着眼的角度放在了实现的功能和代码的逻辑性上,先看一个例子: 1)例子 C代码 1.     void testfork(){ 2.     if(0 = = fork()){ 3.     printf(“create new process success!\n”);…
因为操作系统的很多操作会消耗系统的物理资源,例如创建一个新进程时,要做很多底层的细致工作,如分配物理内存,从父进程拷贝相关信息,拷贝设置页目录.页表等,这些操作显然不能随便让任何程序都可以做,于是就产生了特权级别的概念,与系统相关的一些特别关键性的操作必须由高级别的程序来完成,这样可以做到集中管理,减少有限资源的访问和使用冲突.Intel的X86架构的CPU提供了0到3四个特权级,而在我们Linux操作系统中则主要采用了0和3两个特权级,也就是我们通常所说的内核态和用户态. 运行于用户态的进程可…
一. Unix/Linux的体系架构 如上图所示,从宏观上来看,Linux操作系统的体系架构分为用户态和内核态(或者用户空间和内核).内核从本质上看是一种软件——控制计算机的硬件资源,并提供上层应用程序运行的环境.用户态即上层应用程序的活动空间,应用程序的执行必须依托于内核提供的资源,包括CPU资源.存储资源.I/O资源等.为了使上层应用能够访问到这些资源,内核必须为上层应用提供访问的接口:即系统调用. 系统调用是操作系统的最小功能单位,这些系统调用根据不同的应用场景可以进行扩展和裁剪,现在各种…
原文:https://blog.csdn.net/buptapple/article/details/21454167 Linux探秘之用户态与内核态-----------https://www.cnblogs.com/bakari/p/5520860.html 1.特权级         Intel x86架构的cpu一共有0-4四个特权级,0级最高,3级最低,硬件上在执行每条指令时都会对指令所具有的特权级做相应的检查.硬件已经提供了一套特权级使用的相关机制,软件自然要好好利用,这属于操作系统…
Linux 用户态与内核态的交互  在 Linux 2.4 版以后版本的内核中,几乎全部的中断过程与用户态进程的通信都是使用 netlink 套接字实现的,例如iprote2网络管理工具,它与内核的交互就全部使用了netlink,著名的内核包过滤框架Netfilter在与用户空间的通 读,也在最新版本中改变为netlink,无疑,它将是Linux用户态与内核态交流的主要方法之一.它的通信依据是一个对应于进程的标识,一般定为该进 程的 ID.当通信的一端处于中断过程时,该标识为 0.当使用 net…
1.特权级         Intel x86架构的cpu一共有0-4四个特权级,0级最高,3级最低,ARM架构也有不同的特权级,硬件上在执行每条指令时都会对指令所具有的特权级做相应的检查.硬件已经提供了一套特权级使用的相关机制,软件自然要好好利用,这属于操作系统要做的事情,对于UNIX/LINUX来说,只使用了0级特权级别和3级特权级,即最高最低特权级.也就是说在UNIX/LINUX系统中,一条工作在0级特权级的指令具有了CPU能提供的最高权力,而一条工作在3级特权的指令具有CPU提供的最低或…
一. Unix/Linux的体系架构 如上图所示,从宏观上来看,Linux操作系统的体系架构分为用户态和内核态(或者用户空间和内核).内核从本质上看是一种软件——控制计算机的硬件资源,并提供上层应用程序运行的环境.用户态即上层应用程序的活动空间,应用程序的执行必须依托于内核提供的资源,包括CPU资源.存储资源.I/O资源等.为了使上层应用能够访问到这些资源,内核必须为上层应用提供访问的接口:即系统调用. 系统调用是操作系统的最小功能单位,这些系统调用根据不同的应用场景可以进行扩展和裁剪,现在各种…
本文转载自:http://blog.csdn.net/zcabcd123/article/details/8272360 这是一篇学习笔记,主要是对<Linux 系统内核空间与用户空间通信的实现与分析>中的源码imp2的分析.其中的源码,可以到以下URL下载: http://www-128.ibm.com/developerworks/cn/Linux/l-netlink/imp2.tar.gz [size=3]参考文档[/size] <linux 系统内核空间与用户空间通信的实现与分析…
本文首发于我的公众号 Linux云计算网络(id: cloud_dev),专注于干货分享,号内有 10T 书籍和视频资源,后台回复「1024」即可领取,欢迎大家关注,二维码文末可以扫. Linux 用户态和内核态由于 CPU 权限的限制,通信并不像想象中的使用进程间通信方式那么简单,今天这篇文章就来看看 Linux 用户态和内核态究竟有哪些通信方式. 我们平常在写代码时,一般是在用户空间,通过系统调用函数来访问内核空间,这是最常用的一种用户态和内核态通信的方式.(关于 Linux 用户态和内核态…
1.特权级         Intel x86架构的cpu一共有0-4四个特权级,0级最高,3级最低,硬件上在执行每条指令时都会对指令所具有的特权级做相应的检查.硬件已经提供了一套特权级使用的相关机制,软件自然要好好利用,这属于操作系统要做的事情,对于UNIX/LINUX来说,只使用了0级特权级别和3级特权级.也就是说在UNIX/LINUX系统中,一条工作在0级特权级的指令具有了CPU能提供的最高权力,而一条工作在3级特权的指令具有CPU提供的最低或者说最基本权力   2.用户态和内核态   …
转自:https://www.cnblogs.com/Jimmy1988/p/7479856.html 用户态和内核态 程序代码的依赖和调用关系如下图所示: Lib:标准ASCI C函数,几乎所有的平台都支持该库函数,因此依赖该库的程序可移植性好: System Function:系统调用函数,与系统内核进行交互,不同平台具备不同的函数接口,因此可移植性较差 区分用户态和内核态主要是由于系统资源的有限性,不能无限制的随意分配给用户使用,必须由系统进行统一管理 User mode:不能直接对系统资…
用户态和内核态 程序代码的依赖和调用关系如下图所示: Lib:标准ASCI C函数,几乎所有的平台都支持该库函数,因此依赖该库的程序可移植性好: System Function:系统调用函数,与系统内核进行交互,不同平台具备不同的函数接口,因此可移植性较差 区分用户态和内核态主要是由于系统资源的有限性,不能无限制的随意分配给用户使用,必须由系统进行统一管理 User mode:不能直接对系统资源进行访问,如果要操作系统资源,必须转化为内核态 Kernel mode:管理系统资源,可直接对系统资源…
究竟什么是用户态,什么是内核态,这两个基本概念以前一直理解得不是很清楚,根本原因个人觉得是在于因为大部分时候我们在写程序时关注的重点和着眼的角度放在了实现的功能和代码的逻辑性上,先看一个例子: 1)例子 C代码 1.     void testfork(){   2.     if(0 = = fork()){   3.     printf(“create new process success!\n”);   4.     }   5.     printf(“testfork ok\n”)…
谈到CPU的这两个工作状态,也就是处理器的这两个工作状态,那我们有必要说一下为什么搞出这两个鬼玩意出来.       用过电脑的娃娃们肯定知道在一个系统中既有操作系统的程序,也由普通用户的程序.但那么多指令,可不是随便乱用的,有些指令只能由系统来使用,禁止用户程序去直接访问.为了保证操作系统和各个应用程序能够顺利运行,就必须对他们进行限制,否则的话就根本没有办法保证系统的安全性和稳定.       所以呢,根据运行程序对资源和机器指令的使用权限,把处理器设置为不同的状态.多数系统把处理器的工作状…
当一个任务(进程)执行系统调用而陷入内核代码中执行时,我们就称进程处于内核运行态(或简称为内核态).此时处理器处于特权级最高的(0级)内核代码中 执行.当进程处于内核态时,执行的内核代码会使用当前进程的内核栈.每个进程都有自己的内核栈.当进程在执行用户自己的代码时,则称其处于用户运行态(用 户态).即此时处理器在特权级最低的(3级)用户代码中运行. 内核态与用户态是操作系统的两种运行级别,跟intel cpu没有必然的联系, intel cpu提供Ring0-Ring3四种级别的运行模式,Rin…
用户态和内核态 内核态:cpu可以访问内存的所有数据,包括外围设备,例如硬盘,网卡,cpu也可以将自己从一个程序切换到另一个程序. 用户态:只能受限的访问内存,且不允许访问外围设备,占用cpu的能力被剥夺,cpu资源可以被其他程序获取. 为什么要有用户态和内核态? 由于需要限制不同的程序之间的访问能力, 防止他们获取别的程序的内存数据, 或者获取外围设备的数据, 并发送到网络, CPU划分出两个权限等级 -- 用户态和内核态. 用户态与内核态的切换 所有用户程序都是运行在用户态的, 但是有时候程…
内核态的出现,让计算机系统的权力向操作系统高度集中了. 操作系统分出内核态和用户态,就是为了进行不同等级的权限管理, 从而更好的适应多用户多任务并发的工作环境. 用户态和内核态的来源 在早期的单进程单用户操作系统中,是不存在两种用户态的. 随着进程和用户的出现,当时的计算机面临着一个重要问题,就是如何限制不同进程的操作的权限.(因为操作系统无法预测未来会出现什么样的进程) 把计算机内部想象成一个有条不紊的工厂,那必须在管理者和被管理者之间制定好规则,每个职位的权限都一定要确定好. 所以当时的工程…
Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中. Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图. Linux内核地址空间划分 通常32位Linux内核地址空间划分0~3G为用户空间,3~4G为内核空间.注意这里是32位…
源:http://blog.csdn.net/f22jay/article/details/7925531 Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中. Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图. (看到这个图…
摘要:Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中.用户空间的内存映射采用段页式,而内核空间有自己的规则:本文旨在探讨内核空间的地址映射.   Linux内核地址空间划分 通常32位Linux内核虚拟地址空间划分0~3G为用户空间,3~4G为内核空间(注意,内核可以使用的线性地址只有1G).注意这里是32位内核地址空间划分,6…
1 非抢占式和可抢占式内核 为了简化问题,我使用嵌入式实时系统uC/OS作为例子 首先要指出的是,uC/OS只有内核态,没有用户态,这和Linux不一样 多任务系统中, 内核负责管理各个任务, 或者说为每个任务分配CPU时间, 并且负责任务之间的通讯. 内核提供的基本服务是任务切换. 调度(Scheduler),英文还有一词叫dispatcher, 也是调度的意思. 这是内核的主要职责之一, 就是要决定该轮到哪个任务运行了. 多数实时内核是基于优先级调度法的, 每个任务根据其重要程度的不同被赋予…
转自:Linux用户空间与内核空间(理解高端内存) 参考: 1. 进程内核栈.用户栈 2. 解惑-Linux内核空间 3. linux kernel学习笔记-5 内存管理   Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中. Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页…
转自:http://www.cnblogs.com/wuchanming/p/4360277.html Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中. Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图. Linux内核地…
Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中. Linux内核地址映射模型 x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图. Linux内核地址空间划分 通常32位Linux内核地址空间划分0~3G为用户空间,3~4G为内核空间.注意这里是32位…
Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中.用户空间的内存映射采用段页式,而内核空间有自己的规则: Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对应的数据可能不在内存中. 常见问…
系统调用:如何中用户态切换到内核态 在linux中,系统调用是通过0x86体系结构中的软件中断实现的.这个软件中断与通常说的硬件中断不同之处在于,它是通过软件指令触发,而不是外部设备,这是程序员可以触发的一种异常,调用int 0x80汇编指令就可以产生向量号为128的异常. 进程与线程的区别与联系 操作系统教科书上讲的理论东西就不说了,这里说说linux中复制进程和复制线程的异同. 我们知道,Linux的线程实现是在核外进行的,核内提供的是创建进程的接口do_fork().内核提供了两个系统调用…
[前言]用户态的变化,耳熟能详不在赘述.现在支持读时共享,写时复制. 一.内核态的变化 1.fork一个子进程代码 #include <stdio.h> #include <stdlib.h> #include <unistd.h> int main(int argc, char * argv[]) { int pid; /* fork another process */ pid = fork(); if (pid < 0) { /* error occurre…