探秘Transformer之(8)--- 位置编码】的更多相关文章

​前言  在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 代码:https://github.com/microsoft/Cream/tree/main/iRPE Background Transformer的核心是self-…
这一章我们主要关注transformer在序列标注任务上的应用,作为2017年后最热的模型结构之一,在序列标注任务上原生transformer的表现并不尽如人意,效果比bilstm还要差不少,这背后有哪些原因? 解决这些问题后在NER任务上transformer的效果如何?完整代码详见ChineseNER Transformer水土不服的原因 Hang(2019)在TENER的论文中给出了两点原因 1. 三角函数绝对位置编码只考虑距离没有考虑方向 2. 距离表达在向量project以后也会消失…
对于Transformer模型的positional encoding,最初在Attention is all you need的文章中提出的是进行绝对位置编码,之后Shaw在2018年的文章中提出了相对位置编码,就是本篇blog所介绍的算法RPR:2019年的Transformer-XL针对其segment的特定,引入了全局偏置信息,改进了相对位置编码的算法,将在相对位置编码(二)的blog中介绍. 本文参考链接: 1. 翻译:https://medium.com/@_init_/how-se…
参考: 1. Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context https://arxiv.org/pdf/1901.02860.pdf 2. Self-Attention with Relative Position Representations (shaw et al.2018): https://arxiv.org/pdf/1803.02155.pdf 3. [NLP] 相对位置编码(一) Re…
目录 变压器预处理 包 1 - 位置编码 1.1 - 位置编码可视化 1.2 - 比较位置编码 1.2.1 - 相关性 1.2.2 - 欧几里得距离 2 - 语义嵌入 2.1 - 加载预训练嵌入 2.2 - 笛卡尔平面上的可视化 3 - 语义和位置嵌入 恭喜! 变压器预处理 欢迎来到第 4 周的第一个未分级实验室. 在本笔记本中,您将深入研究应用于原始文本的预处理方法,然后再将其传递给转换器架构的编码器和解码器块. 完成这项任务后,您将能够: 创建可视化以获得对位置编码的直觉 可视化位置编码如何…
本范例即需建立Q4_1至Q4_4 等四个变项, 各变量的数值则是排序的内容,共有0.1.2.3.4 等五种可能,0代表该选项没有被受测者选取,1.2.3.4分别代表被受测者指为第一至第四顺位. https://jingyan.baidu.com/article/ff411625e8e22312e48237d1.html #-*- encoding:utf-8 -*- import numpy as np import pandas as pd def test(): userRatingTabl…
​  前言  DETR首创了使用transformer解决视觉任务的方法,它直接将图像特征图转化为目标检测结果.尽管很有效,但由于在某些区域(如背景)上进行冗余计算,输入完整的feature maps的成本会很高. 在这项工作中,论文将减少空间冗余的思想封装到一个新的轮询和池(Poll and Pool, PnP)采样模块中,该模块具有通用和即插即用的特点,利用该模块构建了一个端到端的PnP-DETR体系结构,该体系结构可以自适应地在空间上分配计算,以提高计算效率. 本文来自公众号CV技术指南的…
​前言 本文介绍了现有实例分割方法的一些缺陷,以及transformer用于实例分割的困难,提出了一个基于transformer的高质量实例分割模型SOTR. 经实验表明,SOTR不仅为实例分割提供了一个新的框架,还在MS Coco数据集上超过了SOTA实例分割方法. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:SOTR: Segmenting Objects with Transformers 代码:h…
​  前言  本文解读的论文是ICCV2021中的最佳论文,在短短几个月内,google scholar上有388引用次数,github上有6.1k star. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 代码:https://github. com/micro…
​  前言  ViT通过简单地将图像分割成固定长度的tokens,并使用transformer来学习这些tokens之间的关系.tokens化可能会破坏对象结构,将网格分配给背景等不感兴趣的区域,并引入干扰信号. 为了缓解上述问题,本文提出了一种迭代渐进采样策略来定位区分区域.在每次迭代中,当前采样步骤的嵌入被馈送到transformer编码层,并预测一组采样偏移量以更新下一步的采样位置.渐进抽样是可微的.当与视觉transformer相结合时,获得的PS-ViT网络可以自适应地学习到哪里去看.…