RNN实现股价预测】的更多相关文章

简介 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.预测未来股价走势是一个再好不过的例子了.在本文中,我们将看到如何在递归神经网络的帮助下执行时间序列分析.我们将根据过去5年的股价预测苹果公司之后的股价. 数据集 我们将使用从2013年1月1日到2017年12月31日的苹果股票价格作为训练集,2018年1月的价格作为测试集.所以,为了评估算法的效果,也要下载2018年1月的实际股票价格. 打开包含五年数据的苹果股票价格的训练文件后可以看到如下几列:“…
背景知识 最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work.于是就花了两个晚上的时间学习了下代码,顺便把核心的内容翻译成中文分享给大家. 首先讲讲对于股票预测的理解,股票是一种可以轻易用数字表现律动的交易形式.因为大数定理的存在,定义了世间所有的行为都可以通过数字表示,并且存在一定的客观规律.股票也不例外,量化交易要做的就是通过数学模型发现股票的走势趋势.“趋势”要这样理解:对于股票的预测,不是说我知…
本篇文章主要教大家如何搭建一个基于Transformer的简单预测模型,并将其用于股票价格预测当中.原代码在文末进行获取.小熊猫的python第二世界 1.Transformer模型 Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,现在比较火热的 Bert 也是基于 Transformer.Transformer 模型使用了 Self-Attention 机制,不采用 RNN 的顺序结构,使得模型可以并行化训练,而且能够拥有全局信息.这篇文章的目的主…
序列标注(sequence labelling),输入序列每一帧预测一个类别.OCR(Optical Character Recognition 光学字符识别). MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像.字线组合序列,序列对应单词.6800个,长度不超过14字母的单词.gzip压缩,内容用T…
介绍   作为RNN的第二个demo,笔者将会介绍RNN模型在识别验证码方面的应用.   我们的验证码及样本数据集来自于博客: CNN大战验证码,在这篇博客中,我们已经准备好了所需的样本数据集,不需要在辛辛苦苦地再弄一遍,直接调用data.csv就可以进行建模了. RNN模型   用TensorFlow搭建简单RNN模型,因为是多分类问题,所以在最后的输出部分再加一softmax层,损失函数采用对数损失函数,optimizer选择RMSPropOptimizer.以下是RNN模型的完整Pytho…
对一张图片实现rnn操作,主要是通过先得到一个整体,然后进行切分,得到的最后input结果输出*_w[‘out’] + _b['out']  = 最终输出结果 第一步: 数据载入 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data import numpy as np import matplotlib.pyplo…
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM 本文可以解答: RNN用来解决什么问题,什么样的数据特征适合用它来解决 ​RNN的缺陷是什么,LSTM,GRU是如何…
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM…
原文引用 Pool, Ewoud & Kooij, Julian & Gavrila, Dariu. (2019). Context-based cyclist path prediction using Recurrent Neural Networks. 824-830. 10.1109/IVS.2019.8813889. 概览 前段时间读了几篇有关轨迹预测的文章,这些文章大多在鸟瞰监控视角下,以提升准确性.多样性和合理性为目的,提出对各情景通用的轨迹预测模型.今天这篇文章则有所不同,…
一.介绍 内容 使用 RNN 进行序列预测 今天我们就从一个基本的使用 RNN 生成简单序列的例子中,来窥探神经网络生成符号序列的秘密. 我们首先让神经网络模型学习形如 0^n 1^n 形式的上下文无关语法.然后再让模型尝试去生成这样的字符串.在流程中将演示 RNN 及 LSTM 相关函数的使用方法. 实验知识点 什么是上下文无关文法 使用 RNN 或 LSTM 模型生成简单序列的方法 探究 RNN 记忆功能的内部原理 二.什么是上下文无关语法 上下文无关语法 首先让我们观察以下序列: 01 0…