pyspark - 逻辑回归】的更多相关文章

http://www.qqcourse.com/forum.php?mod=viewthread&tid=3688 [很重要]:http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html 官方文档里面关于模型配置的所有参数 [spark dataframe ,pandas数据结构使用]http://blog.csdn.net/chaoran_liu/article/details/52203831 [很重要,]pipelin…
该方法好处是可以调节阈值,可调参数比其他形式模型多很多. [参照]http://blog.csdn.net/u013719780/article/details/52277616 [3种模型效果比较:逻辑回归,决策树,随机森林]http://blog.csdn.net/chaoran_liu/article/details/52203831 from pyspark import SparkContextfrom pyspark.mllib.classification import Logis…
1. 梯度计算式导出 我们在博客<统计学习:逻辑回归与交叉熵损失(Pytorch实现)>中提到,设\(w\)为权值(最后一维为偏置),样本总数为\(N\),\(\{(x_i, y_i)\}_{i=1}^N\)为训练样本集.样本维度为\(D\),\(x_i\in \mathbb{R}^{D+1}\)(最后一维扩充),\(y_i\in\{0, 1\}\).则逻辑回归的损失函数为: \[\mathcal{l}(w) = \sum_{i=1}^{N}\left[y_{i} \log \pi_{w}\l…
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的干扰,条件的描述的不够完全,所以可能不确定正确,还希望得到一个概率,比如有病的概率是80%.也即P(Y|X),对于输入X,产生Y的概率,Y可取两类,1或者0. 推导 Sigmod函数 相当于线性模型的计算结果来逼近真实01标记的对数几率. 他的导数: 对数线性模型 概率P的值域是[0,1],线性函数…
数据说明 本数据是一份汽车贷款违约数据 application_id    申请者ID account_number 账户号 bad_ind            是否违约 vehicle_year      汽车购买时间 vehicle_make     汽车制造商 bankruptcy_ind 曾经破产标识 tot_derog           五年内信用不良事件数量(比如手机欠费消号) tot_tr                  全体账户数量 age_oldest_tr     最久…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 最基本的LR分类器适合于对两分类(类0,类1)目标进行分类:这个模型以样本特征的线性组合sigma(theta * Xi)作为自变量,使用logistic函数将自变量映射到(0,1)上. 其中logistic函数(sigmoid函数为): 函数图形为: 从而得到LR的模型函数为:,其中待定. 2.算法(数学)推导 建立的似然函数: 对上述函数求对数: 做下函数变换: 通…
之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-learn中,与逻辑回归有关的主要是这3个类.LogisticRegression, LogisticRegressionCV 和logistic_regression_path.其中LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressio…
逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法.这个算法可能不想随机森林.SVM.神经网络.GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看这个算法,因为它有几个优点是那几个算法无法达到的,一是逻辑回归的算法已经比较成熟,预测较为准确:二是模型求出的系数易于理解,便于解释,不属于黑盒模型,尤其在银行业,80%的预测是使用逻辑回归:三是结果是概率值,可以做ranking model:四是训练快.当然它也有缺点,分类较多的y都不是很适用.下…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 本文主要讲解分类问题中的逻辑回归.逻辑回归是一个二分类问题. 二分类问题 二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题.例如:我们要做一个垃圾邮件过滤系统,是邮件的特征,预测的y值就是邮件的类别,是垃圾邮件还是正常邮件.对于类别我们通常称为正类(positive class)和负类(negative class),垃圾邮件的例子中,正类就是正常邮件,负类就是垃圾邮件.…
Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, LR)又称为逻辑回归分析,是分类和预测算法中的一种.通过历史数据的表现对未来结果发生的概率进行预测.例如,我们可以将购买的概率设置为因变量,将用户的特征属性,例如性别,年龄,注册时间等设置为自变量.根据特征属性预测购买的概率.逻辑回归与回归分析有很多相似之处,在开始介绍逻辑回归之前我们先来看下回归分析. 回归分…
这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器到SVM> .<从线性回归到逻辑回归>两篇文章. 感知器: 前面的文章已经讲到,感知器的目标函数如下: $min \ L(w,b)$ 其中,$L(w,b)=-\sum_{i=1}^{n}[y_i*(w*x_i+b)]$ 对于上面这种无约束的最优化问题,一般采用的是梯度下降的办法,但是,考虑到…
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnblogs.com/hapjin/p/6078530.html 下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现 数据加载到Matlab中的格式如下: 一共有5000个训练样本,每个训练样本是400维的列向量(20X…
是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits using Logistic Regression note:这部分假设你已经熟悉了这几个theano概念:: shared variables , basic arithmetic ops , T.grad , floatX..如果你想要在GPU上运行这个代码,同样可以读读GPU. note:这…
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖…
逻辑回归 1.  总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2.  基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内在分布规律.单个样本表示成二维或多维向量,包含一个因变量Y和一个或多个自变量X.回归分析主要研究当自变量变化时,因变量如何变化,数学表示成Y=f(X),其中函数f称为回归函数(regression function).回归分析最终目的是找到最能代表已观测数据的回归函数. 分类:因变量Y为有限离散集,…
参考自: http://blog.sina.com.cn/s/blog_74cf26810100ypzf.html http://blog.sina.com.cn/s/blog_64ecfc2f0101ranp.html ---------------------------------------------------------------------- Logistic regression (逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性.比如某用户购买某商品的可…
# 逻辑回归 ## 逻辑回归处理二元分类 %matplotlib inline import matplotlib.pyplot as plt #显示中文 from matplotlib.font_manager import FontProperties font=FontProperties(fname=r"c:\windows\fonts\msyh.ttc", size=10) import numpy as np plt.figure() plt.axis([-6,6,0,1]…
6.1  分类问题 6.2  假说表示 6.3  判定边界 6.4  代价函数 6.5  简化的成本函数和梯度下降 6.6  高级优化 6.7  多类分类:一个对所有 6.1  分类问题 在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误).分类问题的例子有:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈等等. 我们从二元的分类问题开始讨论.       我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class)…
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法来进行数值预测.逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类.实践发现,逻辑回归在文本分类领域表现的也很优秀.现在让我们来一探究竟. 1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小…
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man…