设 $f(x)$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=f(1)=0$, $f\sex{\cfrac{1}{2}}=1$. 证明:对于任意的实数 $\lm$, 一定存在 $\xi\in (0,1)$, 使得 $$\bex f'(\xi)-\lm f(\xi)+\lm f(\xi)=1. \eex$$ 证明: 设 $F(x)=e^{-\lm x}[f(x)-x]$, 则 $$\bex F(0)=0,\quad F\sex{\cfrac{1}{2}}=\cfra…