机器学习回顾篇(6):KNN算法】的更多相关文章

1 引言 本文将从算法原理出发,展开介绍KNN算法,并结合机器学习中常用的Iris数据集通过代码实例演示KNN算法用法和实现. 2 算法原理 KNN(kNN,k-NearestNeighbor)算法,或者说K近邻算法,应该算是机器学习中众多分类算法最好理解的一个了.古语有云:物以类聚,人以群分.没错,KNN算法正是这一思想为核心,对数据进行分类. 而所谓K近邻,意思是对于每一个待分类样本,都可以以与其最近的K个样本点的多数分类来来进行划分.举个例子,办公室新来了一个同事,他的位置边上坐着的10个…
1.KNN 简介:knn算法是监督学习中分类方法的一种.它又被叫k近邻算法,是一个概念极其简单而分类效果又很优秀的分类算法. 核心思想:在训练集中选出离输入的数据最近的k个数据,根据这k个数据的类别判断输入数据的类别,k个数据的类别判断方法可以是k个中出现次数最多的类别,也可以根据距离计算权重,再选出权重最大的类别,等等. 准确率的制约:k值的大小和判断类别的方法 2.数据源 分别给出两类由正太分布随机的200个点,并将两类一前一后合并,最后以矩阵的形式存放入dataset: x1 = nump…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
因为SVM和统计机器学习内容很多,所以从 http://www.cnblogs.com/charlesblc/p/6188562.html 这篇文章里面分出来,单独写. 为什么说SVM和统计学关系很大. 看统计学的定义:统计学是通过搜索.整理.分析.描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学. 通过有限的样本,来预测更多的泛化空间的效果,本身就是机器学习的奋斗目标. 而SVM又是基于统计学理论的基础: 基于数据的机器学习是现代智能技术中的重要方面, 研究从观测数据…
机器学习监督学习中,根据解决问题的连续性和离散型,分为分类问题和回归问题.最邻近算法kNN是一种最为直接和简便的分类方法. kNN本质上,是计算目标到模型的欧式距离,从而判定目标所属的类别. 首先,在解决机器学习问题的时候,我们首先,其实面对这样一个问题:对数据的清洗.因为通常的,我们的程序设计语言,只能处理诸如数组,矩阵,字符,以及其他我们在程序设计中常见的一些数据类型.而通常的,我们手中的数据都是以文件的格式给出.比如.TXT格式的. 所以,首先第一步:完成数据类型的转换: 下面给出一段py…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification and regression tree)决策树不仅能用于分类问题,也能用于回归问题. 与ID3算法和C4.5算法相比,CART 还有个特性就是其所有非叶子结点都只有两个子树,也就是说在根据特征属性分裂数据集时,无论该特征属性有多少个可能取值,都只有两种选择——‘是’和‘否’,以上文中判断是否是程序员数据集为例,如果根据近视程度进行分裂,可以将数据集分为{…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
这个算法就比较简单易懂了 就是把每个向量的特征值抽象成坐标,寻找最近的k个点,来进行划分 代码如下 #include <iostream> #include <cstdio> #include <vector> #include <algorithm> #include <map> using namespace std; typedef vector<double> Vd; ; Vd V[maxn], Vt; struct Date…
最近邻分类 概念讲解 我们使用的是scikit-learn 库中的neighbors.KNeighborsClassifier 来实行KNN. from sklearn import neighbors neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30,p=2, metric='minkowski', metric_params=None, n_jobs=…
改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技巧.我们都知道python中有Numby和Scipy这两个库,还有前段时间写的matplot库,绘图用的,大家可以参考下,实际这个算法是看懂之前的一些算法的实现. 上面我就简单介绍下这个算法实现,首先我们先肯定一个事前准备好的矩阵,这个多是事前聚类出来的或者通过专家估计出来的值. 为了这个分类矩阵和…
译者按: 机器学习原来很简单啊,不妨动手试试! 原文: Machine Learning with JavaScript : Part 2 译者: Fundebug 为了保证可读性,本文采用意译而非直译.另外,本文版权归原作者所有,翻译仅用于学习.另外,我们修正了原文代码中的错误 上图使用plot.ly所画. 上次我们用JavaScript实现了线性规划,这次我们来聊聊KNN算法. KNN是k-Nearest-Neighbours的缩写,它是一种监督学习算法.KNN算法可以用来做分类,也可以用来…
0. 写在前面 近日加入了一个机器学习的学习小组,每周按照学习计划学习一个机器学习的小专题.笔者恰好近来计划深入学习Python,刚刚熟悉了其基本的语法知识(主要是与C系语言的差别),决定以此作为对Python的进一步熟悉和应用.所以,在接下里的八周里,将每周分享一篇机器学习的心得笔记.呐,现在开始吧. 1. 什么是kNN算法 要明确什么是kNN算法,还是要先从什么是机器学习这个更加基本的问题开始谈起.以下摘录一段Wiki百科中的概念解释: 机器学习是人工智能的一个分支.人工智能的研究历史有着一…
公号:码农充电站pro 主页:https://codeshellme.github.io KNN 算法的全称是K-Nearest Neighbor,中文为K 近邻算法,它是基于距离的一种算法,简单有效. KNN 算法即可用于分类问题,也可用于回归问题. 1,准备电影数据 假如我们统计了一些电影数据,包括电影名称,打斗次数,接吻次数,电影类型,如下: 电影名称 打斗次数 接吻次数 电影类型 黑客帝国 115 6 动作片 功夫 109 8 动作片 战狼 120 9 动作片 恋恋笔记本 5 78 爱情…
一.概述 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关.由于KNN方法主要靠周…
本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k-NearestNeighbor)分类算法是机器学习算法中最简单的方法之一.所谓K近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.我们将样本分为训练样本和测试样本.对一个测试样本 t  进行分类,kNN的做法是先计算样本 t  到所有训练样本的欧氏距离,然后从中找出k…
现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于python 2.7的,但是我安装的是python 3.6.2. 所以很关键的是,你必须得有一定的python基础.这里我推荐runoob的py3教程,通俗易懂.http://www.runoob.com/python3/python3-tutorial.html 注意:python2和python3是不兼容的 p…
1.KNN算法 KNN算法即K-临近算法,采用测量不同特征值之间的距离的方法进行分类. 以二维情况举例:         假设一条样本含有两个特征.将这两种特征进行数值化,我们就可以假设这两种特种分别为二维坐标系中的横轴和纵轴,将一个样本以点的形式表示在坐标系中.这样,两个样本直接变产生了空间距离,假设两点之间越接近越可能属于同一类的样本.如果我们有一个待分类数据,我们计算该点与样本库中的所有点的距离,取前K个距离最近的点,以这K个中出现次数最多的分类作为待分类样本的分类.这样就是KNN算法.…
1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据…
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集就是模型本身: 思想极度简单: 应用数学知识少(近乎为零): 效果少: 可以解释机械学习算法使用过程中的很多细节问题 更完整的刻画机械学习应用的流程: 2)思想: 根本思想:两个样本,如果它们的特征足够相似,它们就有更高的概率属于同一个类别: 问题:根据现有训练数据集,判断新的样本属于哪种类型: 方…
KNN(K Nearest Neighbor) 还是先记几个关键公式 距离:一般用Euclidean distance   E(x,y)√∑(xi-yi)2 .名字这么高大上,就是初中学的两点间的距离嘛. 还有其他距离的衡量公式,余弦值(cos),相关度(correlation) 曼哈顿距离(manhatann distance).我觉得针对于KNN算法还是Euclidean distance最好,最直观. 然后就选择最近的K个点.根据投票原则分类出结果. 首先利用sklearn自带的的iris…
机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplotlib可以认为是python…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
一.KNN算法原理 K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法. 它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类. 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合.KNN算法不仅可以用…
最邻近规则分类(K-Nearest Neighbor)KNN算法 1.综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入基于实例的学习(instance-based learning),懒惰学习(lazy learing) 2. 例子 未知电影属于什么类型? 3.算法详述 3.1 步骤 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已知实例 根据少数服…
机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…