题目:Deep Continuous Fusion for Multi-Sensor 3D Object Detection 来自:Uber: Ming Liang Note: 没有代码,主要看思想吧,毕竟是第一篇使用RGB feature maps 融合到BEV特征中: 从以下几个方面开始简述论文 Open Problems Contributions Methods Experiments My Conclusion 1> Open Problems 联合多传感器数据能获得更好的特征表示:…
https://blog.csdn.net/qq_21949357/article/details/80538255 这篇论文其实读起来还是比较难懂的,主要是细节部分很需要推敲,尤其是deformable的卷积如何实现的一步上,在写这篇博客之前,我也查阅了很多其他人的分享或者去github找代码,当然也不敢说完全了解了这种特殊的卷积……仅仅做一点自己的阅读心得与体会吧.这是一篇很有意义的工作,但是和深度学习很多论文一样,在读完之后内心也不免有着种种疑云. Deformable Convoluti…
论文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一个基于全卷积的单阶段检测网络,类似于语义分割,针对每个像素进行预测.RetinaNet,SSD,YOLOv3,Faster R-CNN都依赖于预定义的anchor boxes.本文的FCOX是anchor free ,proposal free类型的检测器.将预定义的anchors进行移除,进而减少了大量的计算以及内存占用,同时,anchor中的超参…
论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR 2018的一篇论文,文中提出了一个新的single-shot检测器RefineDet,实现了比二阶段方法更高的准确率而且具有与一阶段方法相当的效率.RefineDet包括两个互连模型ARM(anchor refinement module)和ODM(object detection module):…
论文原址:https://arxiv.org/abs/1703.10295 github:https://github.com/lachlants/denet 摘要 本文重新定义了目标检测,将其定义为用于评估一个规模较大但较为稀疏的的边界框依赖性的概率分布.随后,作者确定了一个评价稀疏分布的机制,Directed Sparse Sampling并将其应用至end-to-end的检测模型当中.该方法扩展了以往SOTA检测模型,并提高了eval 速率同时减少了人工设计.该方法存在两个创新点, I:…
R-CNN总结 不总结就没有积累 R-CNN的全称是 Regions with CNN features.它的主要基础是经典的AlexNet,使用AlexNet来提取每个region特征,而不再是传统的SIFT.SURF的特征.同时,还利用了AlexNet本来的功能:分类,这时所得的分类结果相当于预分类.最后,由于每个Region是有边界的,使用SVM对其进行分类得到一个score,定位每个物体的bounding box. 预处理: 先看一看AlexNet的网络结构 可以看到,它的输入图像是一个…
论文地址:http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhao_EGNet_Edge_Guidance_Network_for_Salient_Object_Detection_ICCV_2019_paper.pdf 当前方法的问题 全卷积网络解决了像素标记问题,出现了几种用于显着物体检测的端到端深度架构. 输出显着性图的基本单位从图像区域开始变成每个像素. 一方面,由于每个像素都有其显着性值,结果突出显示了细节. 但是,它忽略了对…
ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链接:https://arxiv.org/pdf/1907.10471.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第5. 摘要 提出了一种新的两级三维目标检测框架,称为稀疏到稠密三维目标检测框架(STD).第一阶段是一个自下而上的提案生成网络,它使用原始点…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
感觉是机器翻译,好多地方不通顺,凑合看看 原文名称:Complex-YOLO: An Euler-Region-Proposal for  Real-time 3D Object Detection on Point Clouds原文地址:http://www.sohu.com/a/285118205_715754代码位置:https://github.com/Mandylove1993/complex-yolo(值得复现一下) 摘要.基于激光雷达的三维目标检测是自动驾驶的必然选择,因为它直接关…