FileInputFormat 的实现之TextInputFormat】的更多相关文章

说明 TextInputFormat默认是按行切分记录record,本篇在于理解,对于同一条记录record,如果被切分在不同的split时是怎么处理的.首先getSplits是在逻辑上划分,并没有物理切分,也就是只是记录每个split从文件的个位置读到哪个位置,文件还是一个整体.所以在LineRecordReader中,它的处理方式是每个split多读一行,也就是读到下一个split的第一行.然后除了每个文件的第一个split,其他split都跳过第一行,进而避免重复读取,这种方式去处理. F…
本篇分两部分,第一部分分析使用 java 提交 mapreduce 任务时对 mapper 数量的控制,第二部分分析使用 streaming 形式提交 mapreduce 任务时对 mapper 数量的控制. 环境:hadoop-3.0.2 前言: 熟悉 hadoop mapreduce 的人可能已经知道,即使在程序里对 conf 显式地设置了 mapred.map.tasks 或 mapreduce.job.maps,程序也并没有运行期望数量的 mapper. 这是因为,mapper 的数量由…
看到群里面一篇文章涨了贱识 http://www.cnblogs.com/xuxm2007/archive/2011/09/01/2162011.html 之前关注过 reduceer 的数量问题,还没注意到 mapper 的数量怎么确定的 文章中可以提炼出三点: 1.block和split的关系:2.mapper数量是怎么确定的:3.一个split不会包含两个File的Block,不会跨越File边界 还好自己手贱去翻了一下源码 在hadoop2.2.0 的源码中关于mapper数量确定的核心…
摘要 通过input分片的大小来设置map的个数 map inputsplit hadoop 前言:在具体执行Hadoop程序的时候,我们要根据不同的情况来设置Map的个数.除了设置固定的每个节点上可运行的最大map个数外,我们还需要控制真正执行Map操作的任务个数. 1.如何控制实际运行的map任务个数 我们知道,文件在上传到Hdfs文件系统的时候,被切分成不同的Block块(默认大小为64MB).但是每个Map处理的分块有时候并不是系统的物理Block块大小.实际处理的输入分块的大小是根据I…
1.海量日志数据,提取出某日访问百度次数最多的那个IP. 解决方案:首先是将这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中.注意到IP是32位的,最多有个2^32个IP.同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率.然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求. 2.搜索引擎会通过日志文件把用户每次检索使用的所有…
前言:在具体执行Hadoop程序的时候,我们要根据不同的情况来设置Map的个数.除了设置固定的每个节点上可运行的最大map个数外,我们还需要控制真正执行Map操作的任务个数. 1.如何控制实际运行的map任务个数 我们知道,文件在上传到Hdfs文件系统的时候,被切分成不同的Block块(默认大小为64MB).但是每个Map处理的分块有时候并不是系统的物理Block块大小.实际处理的输入分块的大小是根据InputSplit来设定的,那么InputSplit是怎么得到的呢? InputSplit=M…
InputFormat简介 InputFormat:管控MR程序文件输入到Mapper阶段,主要做两项操作:怎么去切片?怎么将切片数据转换成键值对数据. InputFormat是一个抽象类,没有实现怎么切片,怎么转换,由它的子类实现.其中InputFormat的默认实现类是FileInputFormat,其也是一个抽象类,没有具体实现,最终是由FileInputFormat的子类去实现的.子类一共有五个,每一个子类的分片机制和转换成key-value键值对数据的格式都不一样,其中默认使用的是  …
TextInputFormat类 package org.apache.hadoop.mapred; import java.io.*; import org.apache.hadoop.fs.*; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.compress.*; /** An {@link InputFormat} for pla…
MapReduce框架要处理数据的文件类型 FileInputFormat这个类决定. TextInputFormat是框架默认的文件类型,可以处理Text文件类型,如果你要处理的文件类型不是Text, 譬如说是Xml或DB,你就需要自己实现或用库中已有的类型. FileInputFormat的主要方法之一getSplits完成的功能是获取job要处理的路径文件所在的block信息. 数据结构:FileInputSplit 存储了文件的位置信息,如Host,所属文件信息,开始offset,还有长…
InputFormat主要用于描述输入数据的格式(我们只分析新API,即org.apache.hadoop.mapreduce.lib.input.InputFormat),提供以下两个功能: (1)数据切分:按照某个策略将输入数据切分成若干个split,以便确定MapTask个数以及对应的split: (2)为Mapper提供输入数据:读取给定的split的数据,解析成一个个的key/value对,供mapper使用. InputFormat有两个比较重要的方法:(1)List<InputSp…