Pytorch autograd,backward详解】的更多相关文章

平常都是无脑使用backward,每次看到别人的代码里使用诸如autograd.grad这种方法的时候就有点抵触,今天花了点时间了解了一下原理,写下笔记以供以后参考.以下笔记基于Pytorch1.0 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor.如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True.为方便说明,在本文中对于这种我们自己定义的变量,我们称之为叶子节点(leaf nodes)…
retain_graph参数的作用 官方定义: retain_graph (bool, optional) – If False, the graph used to compute the grad will be freed. Note that in nearly all cases setting this option to True is not needed and often can be worked around in a much more efficient way. D…
原文:http://studyai.com/article/11efc2bf#%E9%87%87%E6%A0%B7%E5%99%A8%20Sampler%20&%20BatchSampler 数据库DataBase + 数据集DataSet + 采样器Sampler = 加载器Loader from torch.utils.data import * IMDB + Dataset + Sampler || BatchSampler = DataLoader 数据库 DataBase Image…
参考目录: 目录 1 矩阵与标量 2 哈达玛积 3 矩阵乘法 4 幂与开方 5 对数运算 6 近似值运算 7 剪裁运算 这一课主要是讲解PyTorch中的一些运算,加减乘除这些,当然还有矩阵的乘法这些.这一课内容不多,作为一个知识储备.在后续的内容中,有用PyTorch来获取EfficientNet预训练模型以及一个猫狗给分类的实战任务教学. 加减乘除就不多说了,+-*/ 1 矩阵与标量 这个是矩阵(张量)每一个元素与标量进行操作. import torch a = torch.tensor([…
文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2.3 网络结构 3 PyTorch实现 本来计划是想在今天讲EfficientNet PyTorch的,但是发现EfficientNet是依赖于SENet和MobileNet两个网络结构,所以本着本系列是给"小白"初学者学习的,所以这一课先讲解MobileNet,然后下一课讲解SENet,…
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None) Computes the sum of gradients of given tensors w.r.t. graph leaves.The graph is differentiated using the chain rule. If a…
转自:https://blog.csdn.net/sunny_xsc1994/article/details/82969867,感谢分享 pytorch之nn.Conv1d详解…
[转载]Pytorch详解NLLLoss和CrossEntropyLoss 来源:https://blog.csdn.net/qq_22210253/article/details/85229988 pytorch的官方文档写的也太简陋了吧-害我看了这么久- NLLLoss 在图片单标签分类时,输入m张图片,输出一个mN的Tensor,其中N是分类个数.比如输入3张图片,分三类,最后的输出是一个33的Tensor,举个例子: 第123行分别是第123张图片的结果,假设第123列分别是猫.狗和猪的…
输入数据格式:input(seq_len, batch, input_size)h0(num_layers * num_directions, batch, hidden_size)c0(num_layers * num_directions, batch, hidden_size) 输出数据格式:output(seq_len, batch, hidden_size * num_directions)hn(num_layers * num_directions, batch, hidden_si…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 Keras卷积层 1.1 Conv2D 1.2 SeparableConv2D 1.3 Conv2DTranspose 1.3.1 去卷积的例子1 1.3.2 去卷积的例子2 2 Keras参数初始化 2.1 正态分布 2.2 均匀分布 2.3 截尾正态分布 2.…