我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定.但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n).我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉.这…
1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡二叉树追求绝对平衡,条件比较苛刻,实现起来比较麻烦,每次插入新节点之后需要旋转的次数不能预知. AVL树是最早出现的自平衡二叉(查找)树 红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能.红黑树和AVL树的区别在于它使用颜色来标识结点的高度,它…
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表.从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数. 而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn). AVL的特性 在讨论AVL的特性之前,我们先介绍一个概念叫做平…
在计算机科学中,AVL树是最先发明的自平衡二叉查找树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它. 一.AVL树的旋转规律 AVL树的基本操作一般涉及运做同在不平衡的二叉查找树所运做的同样的算法.但是要进行预先或随后做一次或多次所谓的"AVL旋转". 假设由于在二叉排序树上插入…
AVL 树 是最早时期发明的自平衡二叉搜索树之一.是依据它的两位发明者的名称命名. AVL 树有一个重要的属性,即平衡因子(Balance Factor),平衡因子 == 某个节点的左右子树高度差. AVL 树特点总结下来有: 每个节点的平衡因子有且仅有 1.0.-1,若超过这三个值的范围,就称其为失衡: 每个节点左右子树的高度差不会超过 1: 搜索.添加.删除的时间复杂度为 O(logn),n 为 n 个节点. 看上图,右侧图中二叉树就可以称为AVL 树. 添加后导致失衡 若再添加一个元素 1…
通过前面的介绍,我们知道在二叉树中,每个节点只有一个数据项,最多有两个子节点.如果允许每个节点可以有更多的数据项和更多的子节点,就是多叉树.本篇博客我们将介绍的——2-3-4树,它是一种多叉树,它的每个节点最多有四个子节点和三个数据项. 1.2-3-4 树介绍 2-3-4树每个节点最多有四个字节点和三个数据项,名字中 2,3,4 的数字含义是指一个节点可能含有的子节点的个数.对于非叶节点有三种可能的情况: ①.有一个数据项的节点总是有两个子节点: ②.有二个数据项的节点总是有三个子节点: ③.有…
平衡二叉查找树 平衡二叉查找树是非常早出现的平衡树,由于全部子树的高度差不超过1,所以操作平均为O(logN). 平衡二叉查找树和BS树非常像,插入和删除操作也基本一样.可是每一个节点多了一个高度的信息.在每次插入之后都要更新树的每一个节点的高度.发现不平衡之后就要进行旋转. 单旋转 单旋转是碰到左左或者右右的情况下所使用的方法. 比如: 3 \ 2 \ 1 这样的情况就须要旋转,由于3是根节点,它的左子树高度为0,右子树高度为2.相差超过1了.所以要进行旋转.而这是右右的情况,所以是单旋转.…
定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个节点跟踪"平衡因子balance factor"参数 \(balance Factor=height (left SubTree)-height(right SubTree)\) 平衡因子大于0,称为"左重left-heavy", 小于零称为"右重right-…
1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要插入的值比节点的值小,则向节点的左子树遍历,大于等于则向右子树遍历,如此循环. 1.3删除节点 删除节点x有3种情况: 1.x是叶子结点,则直接删除: 2.x只有一棵子树(左子树或者右子树),则直接将x的父结点指向x的孩子,再删除x节点,如果x是根结点,则要更新x的孩子为树根: 3.x有两棵子树,则…
背景 很多场景下都需要将元素存储到已排序的集合中.用数组来存储,搜索效率非常高: O(log n),但是插入效率比较低:O(n).用链表来存储,插入效率和搜索效率都比较低:O(n).如何能提供插入和搜索效率呢?这就是二叉搜索树的由来,本文先介绍非平衡二叉搜索树. 非平衡二叉搜索树 规则 所有节点的左节点小于节点,所有节点的右节点大于等于自身,即:node.value >  node.left.value && node.value <= node.right.value. 示例…