leetcode排列,求第k个排列】的更多相关文章

stl 中的下一个排列在写一遍忘了 写个1个多小时,使用递归写的,错误就在我使用一个list保存当前剩下的数,然后利用k/(n-1)!的阶乘就是删除的数字,但进过观察, 比如 list={1,2,3} 分成3组: 1  {2,3} 2 {1,3} 3 {1,2} 确定位于哪个组,然后确定位于哪个组的第几个nyoj 511. 求第3个排列   ,3%2=1,删除 list就是第3个数3,其实呢是第2个树2 ,所以   计算方法为 (k-1)/(n-1)! 另外一个对于下一组,k%(n-1)!也不行…
1.31. 下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外常数空间. 以下是一些例子,输入位于左侧列,其相应输出位于右侧列.1,2,3 → 1,3,23,2,1 → 1,2,31,1,5 → 1,5,1 这道题让我们求下一个排列顺序,有题目中给的例子可以看出来,如果给定数组是降序,则说明是全排列的最后一种情况,则下一个排列就是最初始情况,可以参…
题目链接 [题解] 逆康托展开. 考虑康托展开的过程. K = ∑v[i]*(n-i)! 其中v[i]表示在a[i+1..n]中比a[i]小的数字的个数 (也即未出现的数字中它排名第几(从0开始)) 那么我们在逆康托展开的时候,就可以通过直接除(n-i)!得到每个数字的v[i]的值. 然后通过给已经出现的数字打tag. 剩下的问题就转化为找未出现的第v[i]个数字了. 注意康托展开的值是比当前序列小的序列的个数. 所以如果要找序号为k的序列的话,实际上应该找k-1对应的逆康托序列 [代码] cl…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
题目是这样的: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312"…
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1,  n!]. 示例 1: 输入: n = 3, k = 3…
Medium! 题目描述: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1,  n!]. 示例 1: 输入: n…
LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123""132""213""231""312""321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9].给定 k 的范围是[1,  n!]. 示例 1: 输入…
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3,4的全排列 (3!个) 3, 1 + 对2,4的全排列(2!个) 3 + 对1,2,4的全排列 (3!个)-------> 3, 2 + 对1,4的全排列(2!个)-------> 3, 2, 1 + 对4的全排列(1!个)-------> 3214 4 + 对1,2,3的全排列 (3!个…
题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1,  n!]. 示例 1: 输入: n = 3, k =…