HDU 2719 The Seven Percent Solution】的更多相关文章

#include <cstdio> #include <cstring> int main() { ]; ]!='#') { ; while (i<strlen(s)) { if (s[i]==' ') printf("%s","%20"); else if (s[i]=='!') printf("%s","%21"); else if (s[i]=='$') printf("%s&qu…
题意:把字符串中的一些特殊符号用给定的字符串代替. 析:没的说. 代码如下: #include <iostream> #include <cstdio> #include <algorithm> #include <queue> #include <vector> #include <cstring> #include <map> using namespace std; const int maxn = 100; cha…
The Seven Percent Solution Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1680    Accepted Submission(s): 1215 Problem Description Uniform Resource Identifiers (or URIs) are strings like http:/…
The Seven Percent Solution Time Limit: 2 Seconds      Memory Limit: 65536 KB Uniform Resource Identifiers (or URIs) are strings like http://icpc.baylor.edu/icpc/, mailto:foo@bar.org, ftp://127.0.0.1/pub/linux, or even just readme.txt that are used to…
The Seven Percent Solution Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7684   Accepted: 5159 Description Uniform Resource Identifiers (or URIs) are strings like http://icpc.baylor.edu/icpc/, mailto:foo@bar.org, ftp://127.0.0.1/pub/li…
Problem Description Uniform Resource Identifiers (or URIs) are strings like http://icpc.baylor.edu/icpc/, mailto:foo@bar.org, ftp://127.0.0.1/pub/linux, or even just readme.txt that are used to identify a resource, usually on the Internet or a local…
HDU 1000 A + B Problem  I/O HDU 1001 Sum Problem  数学 HDU 1002 A + B Problem II  高精度加法 HDU 1003 Maxsum  贪心 HDU 1004 Let the Balloon Rise  字典树,map HDU 1005 Number Sequence  求数列循环节 HDU 1007 Quoit Design  最近点对 HDU 1008 Elevator  模拟 HDU 1010 Tempter of th…
\(\mathcal{Description}\)   Link.(HDU 裂开了先放个私链 awa.)   在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_{i,j}\),现可将一些不相邻的格子染黑,并保证白格子在四联通意义下存在哈密顿回路,方案的价值为染色格子权值之和.求方案的最大价值.   \(n\le10\),数据组数 \(T\le30\). \(\mathcal{Solution}\)   Emmm...插头 DP 写得太少了,这题还算比较常规…
\(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成树的方案总数,对 \(p\) 取模. \(\mathcal{Solution}\)   首先求出 \(n-1\) 条边构成生成树的方案数,显然矩阵树定理.   接着,令 \(f(i,j)\) 表示操作 \(i\) 次,去重后有 \(j\) 条边的方案数.那么有: \[f(i,j)=jf(i-1,j)…
\(\mathcal{Description}\)   Link.   给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\le m\).   \(n\le2\times10^3\),\(m\le10^6\),\(w_u\in[1,m]\),数据组数 \(T\le10\). \(\mathcal{Solution}\)   很明显是点分,每次考虑跨当前分治重心 \(r\) 的所有连通块对答案的贡献.问题变为:求树上以 \…