TensorFlow单层感知机实现】的更多相关文章

TensorFlow单层感知机实现 简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,只能解决线性可分的问题.虽然限制了单层感知机只能应用于线性可分问题,但具有学习能力已经很好了. 当感知机使用阈值激活函数时,不能使用 TensorFlow 优化器来更新权重.不得不使用权重更新规则: η 是学习率.为了简化编程,当输入固定为 +1 时,偏置可以作为一个额外的权重.那么,上面的公式可以用来同时更新权重和偏置. 下面讨论如何实现单层感知机: 导入所…
简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了. 当感知机使用阈值激活函数时,不能使用 TensorFlow 优化器来更新权重.我们将不得不使用权重更新规则:   η 是学习率.为了简化编程,当输入固定为 +1 时,偏置可以作为一个额外的权重.那么,上面的公式可以用来同时更新权重和偏置. 下面讨论如何实现单层感知机: 导入所需的模块:   定义…
单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as np import matplotlib.pyplot as plt #输入数据 X = np.array([[,,], [,,], [,,], [,,]]) #标签 Y = np.array([[], [], [-], [-]]) #权值初始化,3行1列,取值范围-1到1 W = (np.rand…
softmax函数,可以将算出来的预测值转换成0-1之间的概率形式 导数的形式 import torch import torch.nn.functional as F x=torch.tensor([3.3,2.2,1.0]) x.requires_grad_() y=F.softmax(x,dim=0) print('将x转换成概率型的y',y) print(y[0],x[0]) print('对y1进行求导,由于y是由所有xi来生成的,所以传输入的时候要把所有的x传进去') #由于y=0.…
http://c.biancheng.net/view/1924.html Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果.” 本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价.第2章使用回归技术对房价进行预测,现在…
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果.” 本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价.第2章使用回归技术对房价进行预测,现在使用 MLP 完成相同的任务. 准备工作 对于函数逼近,这里的损失函数是 M…
要求如下: 所以当神经元输出函数选择在硬极函数的时候,如果想分成上面的四个类型,则必须要2个神经元,其实至于所有的分类问题,n个神经元则可以分成2的n次方类型. 又前一节所证明出来的关系有: 从而算出了所有的权重的值.. 代码实现如下: 第一个类是用来操实际操作的类,真正核心的内容是在PerceptronClassifyNoLearn中. package com.cgrj.com; import java.util.Arrays; import org.neuroph.core.data.Dat…
感知机网络的参数设置 % 具体用法: % net=newp(pr,T,TF,LF); % % pr: pr是一个R×2的矩阵,R为感知器中输入向量的维度(本例中使用35个字符表征一个字母,那么其维度为35),每一行表示输入向量每个分量的最小值和最大值.在本例中只有0和1. % T: T表示输出节点的个数,标量(本例使用三个输出节点的组合结果来 表示某一个类标号.实际上三个类标号至少需要两个比特位表示.) % TF: 传输函数,可选hardlim和hardlims,默认为hardlim,建议取ha…
TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定义了层.权重.损失.梯度以及通过梯度更新权重.用公式实现可以帮助我们更好地理解,但随着网络层数的增加,这可能非常麻烦. 本节将使用 TensorFlow 的一些强大功能,如 Contrib(层)来定义神经网络层及使用 TensorFlow 自带的优化器来计算和使用梯度. 通过前面的学习,我们已经知道…
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \mathcal{X}\)表示实例的特征向量,对应于输入空间的点:输出\(y\in \mathcal{Y}\)表示实例的类别.有输入空间到输出空间的如下函数: \[\begin{aligned} f(x)= g(\textbf{w}\cdot \textbf{x}+b) \end{aligned} \…
权重和偏置 import numpy as np # 求x1 and x2 def AND(x1, x2): x = np.array([x1, x2]) w = np.array([0.5, 0.5]) b = -0.7 # tmp = w[0]*x[0] + w[1]*x[1] + b tmp = np.sum(w * x) + b if tmp <= 0: return 0 else: return 1 print(AND(0,0), AND(0,1), AND(1,0), AND(1,1…
一.简介 机器学习分为很多个领域,其中的连接主义指的就是以神经元(neuron)为基本结构的各式各样的神经网络,规范的定义是:由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界的刺激作出的交互反应.而我们在机器学习中广泛提及的神经网络学习就是机器学习与神经网络的交叉部分,本篇就将介绍基本的神经元模型.感知机模型的知识以及更进一步的多层感知机的具体应用(注意,本篇介绍的内容只是当下流行的深度学习的铺垫,因此只使用了无GPU加速的相应模块,关于深度学习的知识.当下…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
▌使用 pathlib 模块来更好地处理路径 pathlib 是 Python 3默认的用于处理数据路径的模块,它能够帮助我们避免使用大量的 os.path.joins语句: from pathlib import Path dataset = 'wiki_images' datasets_root = Path('/path/to/datasets/') train_path = datasets_root / dataset / 'train' test_path = datasets_ro…
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心求助   首先,我感觉不必像 @李Shawn 同学一样认为DNN.CNN.RNN完全不能相提并论.从广义上来说,NN(或是更美…
AI面试必备/深度学习100问1-50题答案解析 2018年09月04日 15:42:07 刀客123 阅读数 2020更多 分类专栏: 机器学习   转载:https://blog.csdn.net/T7SFOKzorD1JAYMSFk4/article/details/80972658 1.梯度下降算法的正确步骤,(正确步骤dcaeb)(梯度下降法其实是根据函数的梯度来确定函数的极小值),这里的问题与其说是梯度下降算法的步骤不如说类似图图像分类训练的整个流程:网络初始化-输入to输出-期望输…
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的…
秋招刚结束,这俩月没事就学习下斯坦福大学公开课,想学习一下深度学习(这年头不会DL,都不敢说自己懂机器学习),目前学到了神经网络部分,学习起来有点吃力,把之前学的BP(back-progagation)神经网络复习一遍加深记忆.看了许多文章发现一PPT上面写的很清晰,就搬运过来,废话不多说,直入正题: 单个神经元 神经网络是由多个"神经元"组成,单个神经元如下图所示: 这其实就是一个单层感知机,输入是由ξ1 ,ξ2 ,ξ3和Θ组成的向量.其中Θ为偏置(bias),σ为激活函数(tran…
DNN,CNN,RNN:1.DNN:深度神经网络,或称多层感知机.解决早期单层感知机对于复杂函数不能模拟的情况.其形式为层之间全连接.实用sig等连续性函数模拟神经对机理的响应,训练算法使用    BP. 2.问题:只是名义上的深层. a:随着层数的加深,优化函数更加容易陷入局部最优解.并且会越来越偏离 b:梯度消失情况更加严重.每传递一层,梯度衰减为原来的0.25; c:多层全连接导致参数膨胀: 当时解决方法: a:实用预训练方法缓解最优解. b:为客服梯度消失,实用relu,maxou等传输…
文章提纲 全书总评 读书笔记 C1.初识神经网络 C2.神经网络是如何学习的 C3.有监督学习(运用感知机) C4.无监督学习(自组织映射) Rreferences(参考文献) 全书总评 书本印刷质量:5星.纸张很白,印刷清楚,文字排版合适,基本没有排版过程中引入的错误,阅读不累眼睛. 著作编写质量:3星.入门书,看完后可能会对神经网络有个基本概念,但是也可能就只有个基本概念.基本概念描述还是清楚的,还给出了比较好的参考资料.几个例子讲的很浅,好处就是提供了代码,如果有开发方向的需要可以参考.深…
文章提纲 安装与配置 开发小结 建立项目 配置项目 理解感知机的代码 安装与配置 JDK的安装:建议JRE 1.8以上: Neuroph安装:建议2.94的版本.下载地址 neuroph-core-2.94:开发的核心包 neuroph-samples-2.94:使用这个框架的例子 Eclipse的安装:建议是java 2018-09以上的版本 配置"Windows→Preferences→Java→Build Path→User Libraries→New"一个"neuro…
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://blog.csdn.net/eddy_zheng/article/details/50763648 1.…
1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果.但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力. 随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart.Williams.H…
一:神经网络 技术起源于上世纪五.六十年代,当时叫感知机(perceptron),包含有输入层.输出层和一个隐藏层.输入的特征向量通过隐藏层变换到达输出层,由输出层得到分类结果.但早期的单层感知机存在一个严重的问题——它对稍微复杂一些的函数都无能为力(如异或操作).直到上世纪八十年代才被Hition.Rumelhart等人发明的多层感知机克服,就是具有多层隐藏层的感知机. 多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用W…
neurolab模块相当于Matlab的神经网络工具箱(NNT) neurolab模块支持的网络类型: 单层感知机(single layer perceptron) 多层前馈感知机(Multilayer feed forward perceptron) 竞争层(Kohonen Layer) 学习向量量化(Learning Vector Quantization) Elman循环网络(Elman recurrent network) Hopfield循环网络(Hopfield recurrent…
本文转载自:http://www.cnblogs.com/maybe2030/p/5597716.html 阅读目录 1. 神经元模型 2. 感知机和神经网络 3. 误差逆传播算法 4. 常见的神经网络模型 5. 深度学习 6. 参考内容 目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然…
41.线性分类器与非线性分类器的区别以及优劣 如果模型是参数的线性函数,并且存在线性分类面,那么就是线性分类器,否则不是.常见的线性分类器有:LR,贝叶斯分类,单层感知机.线性回归常见的非线性分类器:决策树.RF.GBDT.多层感知机SVM两种都有(看线性核还是高斯核)线性分类器速度快.编程方便,但是可能拟合效果不会很好非线性分类器编程复杂,但是效果拟合能力强 42.数据的逻辑存储结构(如数组,队列,树等)对于软件开发具有十分重要的影响,试对你所了解的各种存储结构从运行速度.存储效率和适用场合等…
一.单层感知机(perceptron) 拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换到达输出层,在输出层得到分类结果: 缺点:无法模拟稍复杂一些的函数(例如简单的异或计算). 解决办法:多层感知机. 二.多层感知机(multilayer perceptron) 有多个隐含层的感知机. 多层感知机解决了之前无法模拟异或逻辑的缺陷,同时,更多的层数使得神经网络可以模拟显示世界中更加复杂的情形. 多层感知机给我们的启示是,神经网络的层数直接决定它的刻画能力——利用每层更少的神经元拟合更…
<<matlab高级编程技巧与应用:45个案例分析>> 一. 重新认识向量化编程 1.向量化编程与循环的比较 2.预分配内存更好 3.matlab中是列优先 4.归一化 数据归一化方法是神经网络预测前对数据常傲的一种处理方法.数据归一化处理把所有数据都转化为[0,1]之间的数,其目的是取消各维数据间数量级差别,避免因为输入输出数据数量级差别较大而造成网络预测误差较大. 1.最大最小法    mapminmax() 2.平均数方差法 二.匿名函数 1.形式 f = @(x) x.^2…