The EM Algorithm】的更多相关文章

(EM算法)The EM Algorithm http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html EM算法原理 http://blog.csdn.net/abcjennifer/article/details/8170378 从最大似然到EM算法浅解 http://blog.csdn.net/zouxy09/article/details/8537620…
网易公开课,第12,13课 notes,7a, 7b,8 从这章开始,介绍无监督的算法 对于无监督,当然首先想到k means, 最典型也最简单,有需要直接看7a的讲义   Mixtures of Gaussians 如果要理解Mixtures of Gaussians,那先回去复习一下Gaussians Discriminant Analysis,高斯判别分析 首先高斯判别分析是生成算法, 所以不会直接拟合p(y|x), 而是拟合p(x|y)p(y), 即p(x,y) p(y)符合伯努力分布,…
印象笔记同步分享:Machine Learning-Mixtures of Gaussians and the EM algorithm…
Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 Clustering (3): Gaussian Mixture Model « Free Mind http://blog.pluskid.org/?p=39 2. Regularized Gaussian Covariance Estimation http://freemind.pluski…
Maximum likelihood from incomplete data via the EM algorithm (1977)  …
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html http://blog.sina.com.cn/s/blog_a7da5cda010158b3.html EM算法 一个简单的例子 EM算法有它的缺陷:“坏”的参数初始值设置可以导致EM算法陷进一些局最优点:EM算法的收敛速度比较慢:只有在不存在直接解决的算法的情况下,才应该考虑使用EM算法,因为它并不是解决限制条件下优化问题的高效方法.…
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那么称f是严格凸函数. Jensen不等式表述如下:…
EM算法: 在Eclipse中写出读取文件的代码然后调用EM算法计算输出结果: package EMAlg; import java.io.*; import weka.core.*; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; import weka.clusterers.*; public class EMAlg { public EMAlg() { // TODO Auto-g…
http://cs229.stanford.edu/ http://cs229.stanford.edu/notes/cs229-notes7b.pdf…
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b:P2:-P2 为了估计这个概率(我们事先是不知道这两枚硬币正面朝上的概率的),我们需要通过实验法来进行最大似然估计,每次取一枚硬币,连掷5下,记录下结果 硬币 结果 统计 Coin_a 正 正 反 正 反 3正-2反 Coin_b 反 反 正 正 反 2正-3反 Coin_a 正 反 反 反 反 1…