在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 FLAN-T5 XXL 模型.在此过程中,我们会使用到 Hugging Face 的 Transformers.Accelerate 和 PEFT 库. 通过本文,你会学到: 如何搭建开发环境 如何加载并准备数据集 如何使用 LoRA 和 bnb (即 bitsandbytes) int-8 微调 T…
OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿.130亿.330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络的性能,70亿意味着神经网络中有70亿个参数,由此类推. 在一些大型神经网络中,每个参数需要使用32位或64位浮点数进行存储,这意味着每个参数需要占用4字节或8字节的存储空间.因此,对于包含70亿个参…
本文引自http://i.cnblogs.com/EditPosts.aspx?opt=1 如果说过去的十年是搜索技术大行其道的十年,那么个性化推荐技术将成为未来十年中最重要的革新之一.目前几乎所有大型的电子商务系统,如Amazon.CDNOW.Netflix等,都不同程度地使用了各种形式的推荐系统.而近来以“发现”为核心的网站正开始在互联网上崭露头角,比如侧重于音乐推荐的八宝盒,侧重于图书推荐的豆瓣等等.   那么,一个好的推荐系统需要满足什么目标呢?个性化推荐系统必须能够基于用户之前的口味和…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:苏博览 深度学习应该这一两年计算机圈子里最热的一个词了.基于深度学习,工程师们在图像,语音,NLP等领域都取得了令人振奋的进展.而深度学习本身也在不断的探索和发展中,其潜力的极限目前还没有被看到. 当然,深度学习也不是万能的,比如有很多问题的特征是易于提取的,我们可以直接使用SVM, 决策树的算法来取得很好的结果.而深度学习并不能提供太多的帮助.还有一些问题,我们并没有足够数量的数据,我们也很难通过深度学习算法来得到可用的模型.…
从0开始做垂直O2O个性化推荐 上次以58转转为例,介绍了如何从0开始如何做互联网推荐产品(回复"推荐"阅读),58转转的宝贝为闲置物品,品类多种多样,要做统一的宝贝画像比较难,而分类别做宝贝画像成本又非常高,所以更多的是进行用户画像.分类预测推荐.协同过滤推荐等个性化推荐. 有些同学反馈,他们的产品是垂直类的O2O产品,分类单一,可以简单的实现宝贝画像,这类垂直O2O产品怎么从零开始做个性化推荐呢?这是本文要讨论的问题 一.58到家美甲简介 58到家有三大自营业务"家政&q…
Slope One 是一系列应用于 协同过滤的算法的统称.由 Daniel Lemire和Anna Maclachlan于2005年发表的论文中提出. [1]有争议的是,该算法堪称基于项目评价的non-trivial 协同过滤算法最简洁的形式.该系列算法的简洁特性使它们的实现简单而高效,而且其精确度与其它复杂费时的算法相比也不相上下. [2]. 该系列算法也被用来改进其它算法.[3][4]. 目录   [隐藏] 1 协同过滤简介及其主要优缺点2 Item-based协同过滤 和 过适3 电子商务…
本文来自网易云社区 作者:穆学锋 简介:传统的搜索个性化做法是定义个性化的标签,将用户和商品通过个性化标签关联起来,在搜索时进行匹配.传统做法的用户特征基本是离线计算获得,不够实时:个性化标签虽然具有一定的泛化能力,但是其准确性有所不足,不能很好的做精准个性化.本文提出两个创新优化,一是打通实时用户行为的获取流程,并在实时用户流下采用FTRL算法不断的更新用户特征的权重,将用户实时感兴趣的商品加权,达到online training:二是在保证相关性的前提下,采取推荐的思路,避开打个性化标签,结…
宜信科技中心财富管理产品部负责人Bob,与大家一起聊聊个性化推荐产品功能的设计和B端产品的功能策划方式. 拓展阅读:回归架构本质,重新理解微服务|专访宜信开发平台(SIA)负责人梁鑫 智慧金融时代,大数据和AI如何为业务赋能?|专访宜信AI中台团队负责人王东 一切技术创新都要以赋能业务为目标|专访宜信数据智能研发部负责人张军 记者:Bob老师您好,首先请简单介绍一下您目前主要负责的产品,这些产品各自面向的用户及核心价值是什么. Bob:我在宜信科技中心财富管理产品部,主要负责为我们财富业务的客户…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_136 时至2020年,个性化推荐可谓风生水起,Youtube,Netflix,甚至于Pornhub,这些在互联网上叱咤风云的流媒体大鳄无一不靠推荐系统吸引流量变现,一些电商系统也纷纷利用精准推荐来获利,比如Amzon和Shopfiy等等,精准推荐用事实告诉我们,流媒体和商品不仅仅以内容的传播,它还能是一种交流沟通的方式. 那么如何使用python语法构造一套属于我们自己的推荐系统呢,这里推荐协同过滤算法,它隶属于启发式推荐算法…
0.前言:召回排序流程策略算法简介 推荐可分为以下四个流程,分别是召回.粗排.精排以及重排: 召回是源头,在某种意义上决定着整个推荐的天花板: 粗排是初筛,一般不会上复杂模型: 精排是整个推荐环节的重中之重,在特征和模型上都会做的比较复杂: 重排,一般是做打散或满足业务运营的特定强插需求,同样不会使用复杂模型: 召回层:召回解决的是从海量候选item中召回千级别的item问题 统计类,热度,LBS: 协同过滤类,UserCF.ItemCF: U2T2I,如基于user tag召回: I2I类,如…