前言 假如你想到某个在线约会网站寻找约会对象,那么你很可能将该约会网站的所有用户归为三类: 1. 不喜欢的 2. 有点魅力的 3. 很有魅力的 你如何决定某个用户属于上述的哪一类呢?想必你会分析用户的信息来得到结论,比如该用户 "每年获得的飞行常客里程数","玩网游所消耗的时间比","每年消耗的冰淇淋公升数". 使用机器学习的K-近邻算法,可以帮助你在获取到用户的这三个信息后(或者更多信息 方法同理),自动帮助你对该用户进行分类,多方便呀! 本文…
SLAM算法分为三类:Kalman滤波.概率滤波.图优化 Kalman滤波方法包括EKF.EIF:概率滤波包括RBPF,FastSLAM是RBPF滤波器最为成功的实例, 也是应用最为广泛的SLAM方法: SLAM分为Full SLAM和Online SLAM 常见的二维激光SLAM算法 1.GMapping is a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data…
一.前言 本篇主要针对牟新刚编著<基于FPGA的数字图像处理及应用>第六章第五节中直方图统计相关类容进行总结,包括代码实现及 基于Modelsim的仿真.书读百遍,其意自现. 2020-03-09 22:16:07 二.基于FPGA的直方图算法统计原理 设计难点: (1)统计工作至少要等到当前图像“流过”之后才能完成.此限制决定了我们不可能对统计工作进行流水统计和输出. (2)必须对前期的统计结果进行缓存. (3)在下一次统计前需要将缓存结果清零. 在直方图统计中,我们一般选择片内双口RAM作…
SLAM for Dummies  SLAM初学者教程A Tutorial Approach to Simultaneous Localization and Mapping  一本关于实时定位及绘图(SLAM)的入门指导教程 目录 1. 目录 2. 简介 3. 关于SLAM 4. 硬件 -机器人 -距离量测设备 5. SLAM处理过程 6. 雷达数据 7. 里程计数据 8. 地标 9. 地标提取 SPIKE地标 RANSAC 多种策略 10. 数据结合 11. EKF扩展科尔曼滤波 过程简介…
Apollo问答 | 关于Lattice Planner规划算法的若干问答   上周,我们在Apollo开发者交流群内做了关于Lattice Planner的分享.这里,我们将社群分享里开发者提出的问题进行了归纳整理,现场没有得到回答的问题,大家可以从本期问答内寻找答案. 1 Q Lattice Planner将规划统一成代价函数,寻找代价最小的.在规划的上层是否还需要决策层? A 在规划上层的决策仅仅包含了来自交规的停车指令(比如红绿灯),其余的策略均有下层采样+cost来完成. 2 Q La…
CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲线.指数.对数的计算.该算法通过基本的加和移位运算代替乘法运算,使得矢量的旋转和定向的计算不再需要三角函数.乘法.开方.反三角.指数等函数. 本文是基于FPGA实现Cordic算法的设计与验证,使用Verilog HDL设计,初步可实现正弦.余弦.反正切函数的实现.将复杂的运算转化成FPGA擅长的加减法和乘法,而乘…
传统的路径规划算法有人工势场法.模糊规则法.遗传算法.神经网络.模拟退火算法.蚁群优化算法等.但这些方法都需要在一个确定的空间内对障碍物进行建模,计算复杂度与机器人自由度呈指数关系,不适合解决多自由度机器人在复杂环境中的规划.基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的路径规划问题.该方法的特点是能够快速有效地搜索高维空间,通过状态空间的随机…
路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法:如人工势场法.单元分解法.随机路标图(PRM)法.快速搜索树(RRT)法等.传统的人工势场.单元分解法需要对空间中的障碍物进行精确建模,当环境中的障碍物较为复杂时,将导致规划算法计算量较大.基于随机采样技术的PRM法可以有效解决高维空间和复杂约束中的路径规划问题. PRM是一种基于图搜索的方法,它将连续空间转换成离散空间,再利用A*等搜索算法在路线图上寻找路径,以提高搜索效率.这种方法能用相对少的随机采样点来找到…
随机路标图-Probabilistic Roadmaps (路径规划算法) 路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法如: 1. A* 2. Djstar 3. D* 4. 随机路标图(PRM)法 5. 人工势场法 6. 单元分解法 7. 快速搜索树(RRT)法等 传统的人工势场.单元分解法需要对空间中的障碍物进行精确建模,当环境中的障碍物较为复杂时,将导致规划算法计算量较大.   基于 随机采样技术 的 PRM法 可以有效解决 “高维空间” 和 “复杂约…
基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的路径规划问题.该方法的特点是能够快速有效地搜索高维空间,通过状态空间的随机采样点,把搜索导向空白区域,从而寻找到一条从起始点到目标点的规划路径,适合解决多自由度机器人在复杂环境下和动态环境中的路径规划.与PRM类似,该方法是概率完备且不最优的. RRT是一种多维空间中有效率的规划方法.它以一个初始点…